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Abstract

Originally proposed in the mid-90s, design patterns for software development played a key role
in object-oriented programming not only in increasing software quality, but also by giving a better
understanding of the power and limitations of this paradigm. Since then, several authors have
endorsed a similar task for other programming paradigms, in the hope of achieving similar benefits.

In this paper we discuss design patterns for the Semantic Web, giving new insights on how existing
programming frameworks can be used in a systematic way to design large-scale systems. The common
denominator between these frameworks is the combination between different reasoning systems,
namely description logics and logic programming. Therefore, we chose to work in a generalization of
dl-programs that supports several (possibly different) description logics, expecting that our results
will be easily adapted to other existing frameworks such as multi-context systems. This study also
suggests new constructs to enforce legibility and internal structure of logic-based Semantic Web
programs.

1 Introduction

In the mid-nineties, the Gang of Four’s work on software design patterns [12] paved the way for im-
portant advances in software quality; presently, many valuable experienced designers’ “best practices”
are not only published but effectively used by the software development community. From very basic,
abstract, patterns that can be used as building blocks of several more complex ones, to business-specific
patterns and frameworks, dozens of design patterns have been proposed (e.g. [1, 10, 11, 19, 20, 22, 28]),
establishing a kind of common language between development teams, which substantially enriches their
communication, and hence the whole design process.

Most of the work around design patterns has been focused in the object-oriented paradigm, although
some of the patterns are fundamental enough to be independent of the used modeling and programming
paradigms. Some effort has also been made in adapting some of these best practices to other paradigms
and in finding new paradigm-specific patterns [2, 13, 26, 29]. But all that glitters is not gold, and
design patterns have also been criticized [13, 23, 25] e.g. by the unnecessary increase in complexity
when innapropriately used, by somehow being a sign of the lack of essential features in a programming
language, and by not producing reusable components. We consider that the benefits of design patterns
greatly transcend their drawbacks, and carried the task of identifying several basic and other, more
complex, patterns in the paradigm of dl-programs [8] — which join description logics with rules — a
powerful and expressive approach to reasoning over general knowledge bases or ontologies.

To the best of our knowledge, design patterns have not been studied in the framework of dl-programs,
in spite of their importance. That is the goal of this paper. In order to enhance both the modular nature
of dl-programs and the relevance of some important design principles, we introduce multi description
logic programs (Mdl-programs), a straightforward generalization of dl-programs to accomodate for several
description logics.

The remainder of the paper is structured as follows. Section 2 explains the context and goals of this
work in more detail. Section 3 introduces the concepts that will be relevant throughout the presentation.
Sections 4-7 present nine different design patterns, divided in three groups of growing complexity: ele-
mentary patterns (Section 4), derived patterns (Section 5) and elaborate patterns (Section 7), together
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with a realistic large-scale example illustrating their application (Sections 6 and 7). Finally, Section 8
summarizes the contributions presented earlier.

2 Motivation

The usefulness of combining description logics with rule-based reasoning systems led to the introduction
of dl-programs [8, 7]. A dl-program is a pair KB = (£, P), where L is a description logic knowledge base,
which we will refer to simply as “knowledge base” from this point onwards, and P is a generalized logic
program — a logic program® extended with dl-atoms in rules. The role of dl-atoms is to allow P to query
L, thereby establishing communication between both components. A dl-atom is of the form

DL[Sy opy p1,s-- -, Sm 0, Pmi Q)(E)

where each S; is either a concept, a role, or a special symbol in {=,#}; op, € {¥,0}?; each p; is a unary
or binary predicate symbol depending on the corresponding S; being a concept or a role; and Q(t) is a
dl-query, that is, it is either a concept inclusion axiom F' or its negation —F, or of the form C(t), -C(t),
R(t1,t2), = R(t1,t2), = (t1,t2), # (t1,t2), where C' is a concept, R is a role, ¢, t; and ty are terms.

The operators W and U are used to extend the knowledge base L locally. Intuitively, Sk & py (resp.,
Sk W pi) increases Sy (resp., —Sk) by the extension of py.

The program P is a set of dl-rules, which are rules of the form a « by,...,bg,not bgy1,...,not by,
where any by, ...,b, may be a dl-atom.

We illustrate the use of dl-programs by means of the following example from [17].

Example 1. Consider the dl-program KB = (X, P), where:

R (> 2PapToRev.T) C Over (i1)
Over C VSuper™.Over (i2)

{(a,b)} L {(b,c)} T Super (i3)

P good(X) « DL[;Super](X,Y),not DL[PapToRev W paper; Over](Y") (r1)
over(X) « not good(X) (r2)

paper(b, p1) (r3)

) (ra)

paper(b, p2

We briefly recall this program’s intended meaning as explained in [17]. Axioms (i1) and (i2) indicate
that someone who has more than two papers to review is overloaded, and that an overloaded person
causes all their supervised persons to be overloaded as well. Axiom (i3) defines the supervision hierarchy.
Rule (r1) indicates that, if X is supervising ¥ and Y is not overloaded, then X is a good manager.
Rule (r2) indicates that, if X is not a good manager, then X is overloaded.

The two components of a dl-program are kept independent, communicating only through dl-atoms.
So, although the two components function separately, giving dl-programs nice modularity properties,
there is a bidirectional flow of information via dl-atoms. However, the power of dl-atoms is limited. In
some settings, one wants to share a predicate in both components, in the sense that it should be used
for reasoning both in £ and in P. A typical example is applying closed-world reasoning to a concept or
role in the open-world knowledge base £. With this in mind, in [6] we proposed a global mechanism,
which we called lifting, by means of which a predicate is effectively shared between the two components
of the system and changes made in one of the components are automatically reflected in the other. In
practical terms, lifting consists of applying two operations: adding some rules to P, which allow the
lifted concepts and roles of £ to be visible in P; and changing every dl-atom, porting the changes P
makes to these concepts and roles back into £ in a systematic, global way.

IThroughout this paper, we will assume that the logic programming language is Datalog™, described in [17], which in
particular contains negation-as-failure.

2The original definition of dl-programs included a third operator, but in the context of this paper that operator can be
defined as an abbreviation of the other two.



When considered independently, the two operations used in the lifting construction have a clear se-
mantics of their own. The rules that are added to P define new predicates whose only function is to
observe their counterparts in £, automatically reflecting any changes made on L’s side; the systematic
changes made to dl-atoms have a dual effect, guaranteeing that any changes made to those new predi-
cates by P are automatically reflected in P’s view of the knowledge base. Each of these bears striking
similarities to what is known in the literature as the observer design pattern: a component of a program
registers as an observer of another component when it wants to be informed of any changes made to the
latter.

With this in mind, we decided to study design patterns in dl-programs, following what was already
done for other programming paradigms — object-oriented [12], service-oriented [10], functional [2, 13,
25], logic [29] and others. As several of these authors observed, studying design patterns in different
programming paradigms is far from being a trivial task: each paradigm has its specific features, meaning
that patterns that are very straightforward in one paradigm can be very complex in another, and vice-
versa. For example, a comparative study [25] of the implementation of 23 design patterns presented in
an object-oriented setting [12] and in a functional environment concluded that, in 16 cases, the Lisp
implementation was qualitatively simpler than its C** equivalent.

Looking at dl-programs, it is clear that they represent a completely different programming paradigm
—not only are they closely related to the logic programming paradigm, but they involve description logic
knowledge bases, in the presence of which the study of design patterns attains a different quality: on the
one hand, some patterns become trivial (such as Facade) or meaningless (such as Dynamic Binding
or Singleton), on the other hand some patterns pose totally new problems that have not been addressed
in other paradigms where they do not arise (such as Prozy, which we will discuss in Section 7).

We claim that dl-programs, being a dual-component system, with a description logic and a logic-
based rule language, provide the adequate setting for the study of design patterns for the Semantic Web.
We will, however, work not with the original dl-programs, but with a straightforward generalization
that we will define precisely in Section 3: Mdl-programs (for Multi Description Logic programs), which
incorporate not one, but a finite set of description logic knowledge bases. Mdl-programs are, therefore,
multi-component systems connected by a logic program. This makes perfect sense when we consider
some of the more elaborate design patterns, whose real power can only be appreciated in this more
general setting. Furthermore, as we show, most theoretical results known for dl-programs immediately
translate to similar results about Mdl-programs, thereby justifying the use of the latter.

There are two questions that immediately come to mind, though. In the first place, if one wishes to
consider several ontologies, what are the advantages of using Mdl-programs instead of merging all the
desired ontologies and use the result in a standard dl-program? Also, why define Mdl-programs and
not work within other existing frameworks, such as the more general HEX-programs [9] or multi-context
systems [3]7 We feel it is important to provide satisfactory answers to these two pertinent issues before
proceeding.

2.1 Keeping ontologies separate

The approach we will propose in the next section allows one to work with different ontologies at the
same time, while keeping them separate from each other. We will show that the use of Mdl-programs
allows us to exercise a very fine control on how the different knowledge bases interact (in particular, via
design patterns).

One can naturally wonder whether it would not be simpler to merge all the relevant knowledge
bases into a single, unified, ontology. There are a number of advantages to keeping them separate,
however, which essentially coincide with the reasons universally invoked to defend modularity of large-
scale systems. Indeed, it is much more convenient to have independent knowledge bases (which might
even be physically separated, or independently managed) than a single, gigantic one.

Merging ontologies is in itself a mighty task with its own specific problems. Combining ontologies
immediately presents a number of issues relating to consistency (not only logical, but also structural)
that have to be addressed [5, 16].

Furthermore, ontologies are typically very wide-spectrum, and in practice one does not need to
work with each of them in its entirety. Therefore, keeping them separate also reduces the number of
compatibility issues one has to deal with to the essential minimum. Clearly, if there are two concepts
in two different ontologies that should be identified (from a particular application’s perspective) but are



logically inconsistent, this will always be a problem. However, if that particular inconsistency is irrelevant
for the goal at hand (because the concepts involved are not used), then not merging the ontologies will
simply not raise that question — and our approach allows us to bypass it altogether.

Also, the separation of the knowledge bases allows us to make the most of the positive aspects of each
knowledge base — which is relevant if, say, one of them is very efficient at performing specific reasoning
tasks, while another features richer concept and role constructions.

For these reasons, we feel that a setting that keeps all relevant knowledge bases separate (where their
interaction is externally controlled) is preferable not only for the purposes of this paper, but also as a
general principle.

2.2 Restricting to description logics

The need identified in [21] for the representation and manipulation of contextual information as a means
to solve the problem of generality led to several proposals, namely the one of contexts as a tool for
formalizing the locality of reasoning as first proposed in [14], where context is taken as “the set of facts
used locally to prove a given goal plus the inference routines used to reason about them”. This work
and others following it (e.g. [15, 27, 4, 3]), use so-called bridge-rules to be able to represent the flow of
information between contexts; the idea is that formulas are labelled with the context they belong to and
inferences can be made that add new facts to a given context depending on facts coming from the others.
In [27, 4], contexts are homogeneous (in what concerns the languages supported), and non-monotonic
reasoning is possible. Heterogeneous contexts are supported in [15] and [3], the difference between these
being that the former does not support non-monotonic reasoning. Hex-programs [9] were also proposed
as a heterogeneous programming language for the Semantic Web, being designed for interoperating
with heterogeneous sources via external atoms and for meta-reasoning via higher-order literals; those
authors also studied, in that framework, conflict resolution in semantic integration of ontologies (using
a “forgetting” construction).

Mdl-programs, presented in this paper, limit heterogeneity to two different frameworks: description
logics for the knowledge bases part and logic programming for the rule part; the latter somehow represents
the “conductor” that “coordinates” the other parts. However, they fully support non-monotonicity (even
at the level of the description logic knowledge bases as will be seen later by application of a specific basic
pattern). Mdl-programs are therefore a simpler framework than the alternatives discussed above —
which is an advantage for our purpose; still, description logics are at the core of the Semantic Web,
with a huge effort being currently invested in the interchange between OWL — an extension of the
description logic SROIQ and a W3C recomendation [18] — and a diversity of rule languages, namely logic
programming languages, via the the definition of RIF (Rule Interchange Format), which is also a W3C
recommendation [24].

Furthermore, as we will show in the next section, Mdl-programs inherit all the good properties of
dl-programs, which made them interesting in the first place, while simultaneously keeping enough key
ingredients of multi-context systems and HEX-programs to make the study of design patterns general.

3 Interfacing between multiple DLs and logic programs

In this section we establish the grounds for our work, giving a formal definition of Mdl-programs and a
summary of their properties.

3.1 Mdl-programs

We generalize the definition of dl-programs in [8], presented at the top of Section 2, to accommodate
for several description logic knowledge bases. This is in line with [30], although we will stick to the
original operators W and & in dl-atoms — see the discussion at the end of this section for a more detailed
explanation of this.

Definition 1. A dl-atom relative to a set of description logic knowledge bases {L1,...,L,} is
DL7, [Sl Op1P1y-- -, Sm 0Py, Pmis Q] (t) 5

which we often abbreviate to DL;[x; Q](t), where:



e 1 <1< n;

each Sy is either a concept or a role from £; or a special symbol in {=, #};

opy € {W,U};

pi are the input predicate symbols, which are unary or binary predicate symbols depending on the
corresponding Sy being a concept or a role;

e ((t) is a dl-query in the language of L;.

The description logics underlying the £;s need not be the same. Note that we use the two operators &
and U. The third operator in [8] can be defined in terms of U, and furthermore not including it simplifies
the semantics of Mdl-programs, as was discussed in [30] in a slightly different context.

Definition 2. An Mdl-program (for Multi Description Logic program) is a pair ({£1, ..., L, }, P) where:
e cach £; is a description logic knowledge base;

e P is a set of (normal) di-rules, i.e. rules of the form
a <« by,...,bg,not bpt,...,not by

where any b; may be a dl-atom relative to {L1,...,L,}.

The semantics of Mdl-programs is a straightforward generalization of the semantics for dl-programs.
As usual, the Herbrand base of P, denoted by H Bp, contains all ground atoms built from predicate
symbols and constants in P.

Definition 3. An interpretation I C HBp satisfies a ground atom a, I [ a, if:
e a € HBp and a € I

e ais DL;[x; Q] (c), with x = S10p;p1,---,Sm 0P, Pm, and Li(I;x) = Q(c), where L;i(I;x) =
Li UU™ | Ap(I) with

) {Sk(e) | pr(e) € I} if op, =4
A1) = {{—\Sk(e) | prle) € I} if opy = Ul

From this concept, we can define answer set semantics and well-founded semantics for Mdl-programs
exactly as for dl-programs. All the results in [8] and [7] hold. Also, Mdl-programs are a generalization
of dl-programs in the following sense.

Theorem 1. Let (£, P) be a dl-program. Then:

1. aset I C HBp is a strong answer set for (£, P) iff I is a strong answer set for the Mdl-program

<{£}7 P);
2. WES((L,P)) = WES(({L}, P)).

3.2 Mdl-programs with observers

We now define a syntactic construction on Mdl-programs, which generalizes the lifting construction in [6]
as explained earlier: we identify the predicates from £ being observed in P, and the predicates from P
being observed in L.

Definition 4. An Mdl-program with observers is a tuple
{Ly, . Lo}, PoAA, o A {0, 0 )
where:

o ({L4,...,L,},P)is an Mdl-program;



e for 1 <i < n, A; is a finite set of pairs (S, p) where S is a concept, a role, or a negation of either,
from £; and p is a predicate from P;

e for 1 <i <n, U, is a finite set of pairs (p, S) where p is a predicate from P and S is a concept, a
role, or a negation of either, from L;.

For each pair in ¥; or A;, if S is a concept, then p is a unary predicate; if S is a role, then p is a
binary predicate. The sets Aq,...,A,, Vq,..., ¥, will occasionally be referred to as the observers of

({L1,...,Ln},P).

Intuitively, A; contains the concepts and roles in £; that P needs to observe, whereas ¥; contains
the predicates in P that £; wants to observe. Note that a specific symbol (be it a predicate, concept or
role) may occur in different ;s or A;s; this will in fact be crucial for some of the examples in the next
sections.

For simplicity, when we consider Mdl-programs with observers that only have one knowledge base,
we will omit the braces and refer to them as dl-programs with observers.

From an Mdl-program with observers we can obtain a standard Mdl-program in a straightforward
way as follows.

Definition 5. Given the above Mdl-program with observers, it implicitly defines the Mdl-program
<{£1, e Laky 73,%/11[\\1;"> where 731%11 1‘\1/:” is obtained from P by:

e adding the rule
p(X) «— DL;[; S|(X)

for each (S, p) € Ay;

e in each dl-atom DL;[x;Q](t) (including those added in the previous step), adding S W p to x for
each (p,S) € ¥; and SU p to x for each (p,—S) € ;.

3.3 Discussion

At this stage, we would like to point out some features of Mdl-programs with observers that are relevant
for the remainder of this paper.

In the first place, we observe that we stick to the two original operators W and U of dl-programs in
e.g. [8], instead of adopting the more recent proposal of @ and & as suggested in [30]. The motivation for
this choice has to do with the clearer semantics thus obtained, namely in the case (not discussed in [8])
when a dl-atom extends a particular concept or role in more than one way —e.g. in DL[PWp, PU ¢; Q](t))
—, which will often occur in our examples. From the semantics of ¥ and W, this means that all instances
of p(X) will be added to the extent of P, and all instances of ¢(X) will be added to the extent of —P.

There is a clear problem with this: if p and ¢ are incompatible (for example, if p(a) and ¢(a) both
hold), then the corresponding dl-query @ will be posed to an inconsistent knowledge base (one that
contains both P(a) and =P(a)), which of course is not desirable. However, although this is an important
point to take into consideration, it is not likely that a well-designed program would lead to this kind of
situation. In fact, as we will see, a well thought-out application of the design patterns herein presented
will help preventing such problems.

The alternative proposed by Wang [30] was to replace W and W by two operators & and &, where
the first two of each pair are equivalent, but P © ¢ removes instances of ¢ from the extent of P instead
of adding them to —P. In this way, inconsistency is avoided in many cases (although not always,
since @ still adds instances to the knowledge base). However, two other problems arise. First, the
semantics of simultaneous extensions are not clear — in the example above, writing DL[P ®p, Po¢; Q](t)
would add and remove P(a), it not being clear what the final result should be: if we keep the original
knowledge base, then the context of the query is misleading, but if we apply the operators in order then
DL[P ®p,P o q;Q|(t) and DL[P & q, P @ p; Q](t) are not equivalent, which is very counter-intuitive.
Second, the effect of removing instances from the knowledge base is not always obvious: consider the
case where the knowledge base contains the axioms P T @ and P(a), while the logic program contains
the fact z(a). What should the dl-atom DL[Q & z; Q](X) return?

We feel that these two problems, which are not discussed in [30], are severe enough to justify the use
of the original operators of [8]. With the original operators, the possibility of reaching an inconsistent



environment (which is a feature of dl-programs) is the price to pay for having a clear semantics for
dl-atoms.

A second comment that we feel is important to make regards the assymetry in the generalization from
dl-programs to Mdl-programs. The reader might be wondering why we do not take this construction
a step further, and define a system with several description logic knowledge bases and several logic
programs. The answer lies in the assymetry already present in dl-programs themselves: the logic program
is not only a component of the system, it is also the component responsible for interaction with the outside
world. In particular, the dl-program’s view of £ is the view from each dl-atom — all changes made by P to
the knowledge base only affect the logic program’s view of it. Therefore, it is natural to consider several
knowledge bases with a single logic program as the orchestrator (and where the outside world only “sees”
that program’s view of each knowledge base) rather than a more democratic system with several logic
programs and several knowledge bases freely interacting with each other. This does not exclude that,
in the future, it might be worth to study connecting patterns between two or more Mdl-programs (for
instance, using a Mdl-program as a module of another Mdl-program, as a way to protect and restrict
the access to certain knowledge bases).

A third aspect concerns additional similarities and differences between Mdl-programs and multi-
context systems (apart from the ones discussed earlier). In both cases, we are faced with several inde-
pendent components connected by a set of rules — a logic program, in the case of Mdl-programs, and
the sets of bridge rules, in multi-context systems. However, all components of multi-context systems
are observable from the outside world, since models of multi-context systems contain models of each
individual component. It is also interesting to observe that the flavour of bridge rules is pretty much
captured by the generalization to Mdl-programs with observers: the pairs in the observer sets achieve the
effect of systematically extending a predicate, concept or role in one component with information from
another component, in the same way bridge rules control the information flow within a multi-context
system.

Finally, we would like to point out that the definition of lifting in [6] is a particular case of the
more general construction we presented above: the dl-program with lifting (£, P,T') is equivalent to
the Mdl-program with observers ({£}, P,{A},{¥}) where A = {(S,p™),(=S,p7) | S € I'} and ¥ =
{{p™,S),(p~,—S) | S € T'}. In fact, in Section 5 we will present lifting as a design pattern in itself — so
this work generalizes that earlier paper. We refer the reader to [6] for a detailed motivation of the lifting
construction and examples of its usage.

The presentation of the design patterns is structured as follows. The next two sections introduce
the simplest design patterns. For each of them, we begin by presenting a motivational example and
a possible solution; from this, we abstract the underlying pattern and how it should be dealt with in
general. Section 6 then discusses a large-scale example where these design patterns can be found, in
order to show how this methodology can be used in practice. Finally, Section 7 discusses more complex
design patterns building on the example from Section 6.

4 Elementary design patterns

In this section, we introduce the elementary design patterns, which are the building blocks from which
more complex patterns will be defined.
The definition of each design pattern is presented within the context of an Mdl-program with observers

{Ly, Lo}, PoAAL, - A { T, .., 0, 1),

even though for simplicity the examples in this section all assume n = 1.

4.1 Observing a knowledge base

The first design pattern we consider occurs when the logic program component wants to systematically
import information from a knowledge base in order to define a predicate, keeping track of changes made
to the relevant concept or role in its defining component.



Scenario. The National Zoo keeps an ontology containing information about all the animals currently
living in its premises, as well as several rules pertaining to the characteristics of the different species.
This ontology L is used also by the company that provides food for all the zoo’s feline inhabitants,
coupled with a rule-based program P in a dl-program (£, P). In this program, it is necessary that P
be constantly updated with the information about the current feline population of the zoo, hence the
following rule was included.

feline(X) < DLJ;feline](X)

Note that, although their name is the same, the feline in the head of the rule is a predicate from P
whereas the feline in the body is a concept from £. No confusion can arise from this, since the only place
where predicates from £ may occur in P is within dl-atoms.

The company could have obtained the same result by removing the above rule from P (thus leaving
feline undefined) and working with the dl-program with observers (£, P, {(feline, feline)},?). In both
cases, any changes made to feline in the zoo’s ontology will be automatically reproduced in P. Although
the effect is the same, the latter option makes it very clear that feline in P is an observer of its homonym
from £, making the global dl-program with observers easier to understand and maintain.

Pattern Observer Down.

Problem. A predicate p from P needs to be updated every time the extent of a concept or role S (of the
same arity as p) in £; is changed.

Solution. Add the pair (S, p) to A;.

4.2 Dynamically modifying the view of a knowledge base

A second scenario occurs when one of the description logics’ functionality relies on the observation of a
predicate from P. Consider the following example.

Scenario. A sweets distributor provides an ontology to all the shops selling its products containing
general information and reasoning about the different types of sweets on sale. Being a generic knowledge
base, this ontology has no concrete facts: in particular, the extent of the predicate sweet is empty. Each
shop interacts with the central ontology by means of a particular dl-program KB = (£, P), where L is the
central ontology and P contains facts detailing the specific brands of sweets being sold in that particular
location. In order for the program to function appropriately, sweet (in £) needs to be automatically
updated whenever a new fact is added to the relevant predicate in P, so that this fact can be taken into
account.

Sweets In Heaven uses a predicate forSale in P to store the information about the brands available
at their shop. In order to use £ to reason about these products, they need to replace all dl-atoms
DL[x; Q](t) in P with

D L[sweet & forSale, x; Q] (%)
meaning that £ behaves as though its predicate sweet was actually extended with all sweets for sale

at Sweets In Heaven. This is exactly the same as replacing CB by the dl-program with observers
(L, P,0,{(forSale, sweet)}).

Pattern Observer Up.

Problem. A concept or role S from £; needs to be updated every time the extent of a predicate p (of the
same arity as S) in P is changed.

Solution. Add the pair (p, S) to ¥,.




4.3 Closing the world

The third building block addresses a very typical situation in ontology design and usage: in order for a
concept or role to work as expected, it should be given closed-world semantics.

Scenario. A digital library has an ontology with information about all the titles it contains. One of the
concepts it defines is forSale, applicable to electronic books that are available for download for a price.
However, description logics are not able to perform closed-world reasoning, so a query to the ontology
about —forSale is not sufficient to inform a user that a given title is not for sale.

With this in mind, the software developers working for the digital library integrated the ontology £
in the framework of a dl-program (£, P), where P is a very simple program containing only the following
rules.

forSale(X) « DLJ; forSale](X)
notForSale(X) < not forSale(X)

The information about titles that are not for sale is now directly available in the predicate notForSale
of P.

Using observers, the resulting program is (£, P, {(forSale, forSale)}, {(notForSale, —forSale)}), where P
contains only the second of the above rules.

Furthermore, if the library later wants to extend P further, then all dl-atoms must be of the form
D LiforSale U notForSale, x; Q](t) — thus querying £ extended with the desired closed-world interpretation
of forSale. This is the reason for the pair in the second observer set of the dl-program with observers
defined above.

Pattern Closed-world.
Problem. The concept (or role) S from £; should follow closed-world semantics.

Solution.
Choose predicate symbols st, s~ not used in P.
Add (S, sT) to A;.
Add (s7,=S) to ¥,.
Add the rule s7(X) « not sT(X) to P.

5 Derived design patterns

We now present a second set of general-purpose design patterns that can be seen as organized combina-
tions of the previous ones, but are also useful as components of more complex patterns.

Throughout this section all patterns are again defined within the context of an Mdl-program with
observers

(L, Lo}, PoA{AL, - A {0, 0, 1)

5.1 Flexible definitions

We now introduce a design pattern that allows one to define a predicate in P abstracting from how it is
represented in the knowledge bases.



Scenario. Vineyards are a major tourist atraction of Wineland. Knowing this, the country’s Tourist
Information Office has decided to combine information from the three major regional wine producers’
associations in an Mdl-program KB = ({Li,La, L3}, P), where the L£;s are the knowledge bases con-
taining information about the wines produced in each region, by means of which tourists can access the
information present in all three.

Since the three knowledge bases were developed independently, the need arose for a predicate unifying
the concept of wine, which is distributed among them. Therefore, P needs to import all the information
from the corresponding predicates wine from L1, wineBrand from £5 and (very unimaginatively) product
from Ls3.

To unify these three concepts in a single predicate in P, the Tourist Information Office included the
three following rules in its program.

wine(X) < DL[;wine](X)
wine(X) <« DLs[; wineBrand](X)
wine(X) « DLg][; product](X)

This amounts to replacing KB by the Mdl-program with observers ({£1, Lo, L3}, P, {A1, Ao, A3}, {0,0,0})
where

Ay = {{wine, wine)}

Ay = {{wineBrand, wine) }
A3 = {(product, wine)}

Pattern Polymorphic Entities.

Problem. In P there is a predicate p whose instances are inherited from concepts or roles Si,..., Sk
where S; comes from the knowledge base L.

Solution. For each j, add the pair (Sj,p) to Ay

Note that Polymorphic Entities consists of a combined application of several Observer Down,
all with the same observer predicate in P.

This pattern captures the essences of the Polymorphism and Dynamic Binding patterns from object-
oriented programming [19]: these patterns deal (at different levels) with definitions that are kept separate
from their usage. In typed languages, this poses a number of technical issues that require careful planning.
In the world of logic programming, however, several of these difficulties do not exist: predicates are not
typed, so when using them in bodies of rules one does not have to worry about how they are defined;
and their definitions are very simple to change.

In Polymorphic Entities, we deal with a concept that is kept as independent as possible from its
definition. Instead of defining clauses, the instances are plugged in through the use of Mdl-programs
with observers, thus externalizing the definition of the predicate — in the spirit of Dynamic Binding. The
possibility of using different concepts (eventually from different knowledge bases) captures the essence
of Polymorphism.

5.2 Interconnecting description logics

Another variant of the Observer design pattern occurs when a description logic’s functionality relies on
the observation of a predicate in a different description logic; this can be achieved by combining both
the Observer Up and Observer Down patterns, thus making the logic program P a mediator. A
particular case arises when an ontology designed primarily for reasoning interacts with a knowledge base
that is mostly about particular instances. In practice, this design pattern appears mostly in combination
with Definitions with Holes, so we will postpone the presentation of a concrete scenario to the next
subsection.
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Pattern Transversal Observer.

Problem. A concept (or role) S from L£; needs to be updated every time the extent of a concept (resp.
role) R from L; is changed (with i # j).
Solution.
Choose a predicate symbol p not used in P.
Add (R, p) to A;.
Add (p, S) to ;.

Note that Transversal Observer consists of a combined application of Observer Up together with
Observer Down, relative to two different description logics.

5.3 Underspecification

In a modular system, it makes perfect sense to use concepts whose definition is left to other components.
This is the motivation for the next design pattern.

Scenario. A company is designing an ontology to help with school management. One of the rules
included in the ontology is
canAskDiplomma C graduated M —onHold

stating that a student can ask for his diplomma after graduating if he has no pending issues with the
school. Although graduated is a predicate defined in this ontology, the company has no way of knowing
a priori which criteria to use to decide whether a student still has pending issues with the school, as this
varies from school to school.

Therefore, the ontology will not have any information about instances of onHold — the definition
of this concept will be left to other components that will be integrated with the ontology through an
Mdl-program via Observer or Polymorphic Entities.

Pattern Definitions with Holes.

Problem. In £; there is a concept or role S needed for reasoning but its definition will be in £; (with
i#£j)or P.

Solution.
Use S in £; without defining it (so the extent of S is empty).

Later, connect S to its definition using Observer Up, Observer Down or Transversal Ob-
server, possibly coupled with Polymorphic Entities.

In our example, suppose the company’s ontology £; is integrated in an Mdl-program ({L1, L2}, P),
where £ is the school’s own knowledge base (essentially a database containing information about the
school’s students) and P contains rules connecting both and performing other reasoning tasks. In that
school, a student is onHold if he is owing money to the school (stored in L5 by means of the con-
cept inDebt); hence, one can apply Transversal Observer to define onHold as an observer of inDebt.
In a different, elite, school, the same concept is implemented differently, since the school forces its
students to get extra credit by attending at least five seminars; so here onHold is an Observer of
(<4 attendedSeminar) U inDebt. Note that, in this situation, the school’s knowledge base would need
to provide an auxiliary concept equivalent to this condition due to the restrictions on the syntax of
dl-queries.

This pattern corresponds to the Template Method pattern of object-oriented programs [12], and to
the Programming with Holes technique of [22].

In the next section we will show an example where the holes are filled in by resorting to Polymorphic
Entities.

11



5.4 Distributed definitions

In [6], we presented lifting as a first-class mechanism encapsulating a set of changes to a dl-program
working together for a specific purpose. We now present it in a more abstract and general way as a
design pattern. Lifting occurs when a predicate’s definition is split between different components of the
Mdl-program.

Scenario. A company sells cars in several dealers across town. Each dealer has access to the company’s
car knowledge base £, which specifies several properties of the available models and the dealers which sell
them. One of the dealers with the company has his own information stored as a rule-based program P.
To integrate both systems, he uses a dl-program; however, he still needs to share some concepts between
both components. For example, the concept car, whose instances include all cars centrally available for
sale, is defined in £, but P has information about second-hand cars that occasionally go through the
store, stored in a predicate secondHandCar and which the dealer wants to reason about in his view of
L; P also has information about motor bikes, that also occasionally go through the store, stored in a
predicate motorBike, and which should be considered distinct from cars, when reasoning in P’s view of
L. In order to achieve full integration between the two components, he added two new predicates car™
and car™ to P, connecting them to his predicates by means of the two rules

cart(X) « secondHandCar(X)
car” (X) < motorBike(X)

and with car from £ via the two rules

car(X) « DLJ; car](X)
car” (X) « DL[; —car|(X) .

Furthermore, every dl-atom DL[x; Q](¢) needs to be replaced by DL[car & car™, cart car™, x; Q|(¢). In
this way, one can use positive and negative facts about cars both in £ and in P. The definition of car
is truly split between £ (which contains all the relationships between this and the other concepts in the
knowledge base) and P (which is where the information about second-hand cars and motor bikes, which
are not cars, is fed into it).

Using Mdl-programs with observers, the same construction can be designed in a simpler way: the
only rules one needs to include in P are the two first ones (relating cart with secondHandCar and
car™ with motorBike), while the rest is achieved by taking A = {(car,car™), (-car,car™)} and ¥ =
{(car™, car), (car™, —car)}.

Pattern (Named) Lifting.

Problem. The definition of a predicate should be distributed among some of the £;s (in the form of
concepts or roles S;) and P (in the form of two predicates p™ and p~, corresponding to the
predicate and its negation).

Solution.

For each 4, add (S;, p™) and (=S;,p™) to A;.
For each 4, add (p*,S;) and (p~,—S;) to ¥,.

Named Lifting generalizes the original lifting construction of [6] because it allows the programmer
to choose the names for the predicates in P. We will refer to it simply as Lifting when no confusion
may arise between the earlier construction and the design pattern.

It should come as no surprise that Lifting consists simply of a set of applications of Observer Up
and Observer Down with the same predicate in P observing and being observed simultaneously by all
the S;s involved in the pattern. However, Lifting is essentially different from Observer: in Observer,
a predicate is defined in one component and used in others; in Lifting, not only the usage, but also
the definition of the predicate is split among several components, so that one must look at the whole
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Mdl-program to understand it. This is also part of the reason to include the negations of the predicates
involved in the observers: the different predicates must all end up with the same semantics.

It is possible to apply Lifting when P does not participate in the predicate’s definition. In this case,
P is simply a mediator, and p* and p~ can be any fresh predicate names.

6 A comprehensive example

In this section, we show how the different design patterns introduced so far can be used in a realistic
example, making several programming tasks much more systematic. This example will also be used in
the next section as a context in which to introduce more sophisticated design patterns.

Scenario. The software developers at WISHYOUWERETHERE travel agency decided to develop an
Mdl-program to manage several of the agency’s day-to-day tasks. Currently, WISHYOUWERETHERE
has two active partnerships: one with an aviation company, another with a hotel chain. Therefore, the
Mdl-program to be developed uses three different ontologies:

e L4 is a generic accounting ontology for travel agencies, which is commercially available, and which
contains all sorts of rules relating concepts relevant for the business. This ontology is strictly
terminological, containing no specific instances of its concepts and roles.

e L is the aviation partner’s knowledge base, containing information not only about available flights
between different destinations, but also about clients who have already booked flights with that
company.

e Ly is a similar knowledge base pertaining to the hotels owned by the partner hotel chain.

One of the points to take into consideration is that the resulting Mdl-program with observers
LA Lr, Lu}, PoAAA, Ap, A}, {Va, Vp, Yy })

should be easily extended so that the travel agency can establish partnerships with more aviation com-
panies and hotel chains, as long as those provide their own knowledge bases. At the end of this section,
we will show how the systematic use of design patterns and observers helps towards achieving this goal.

By establishing partnerships, WISHYOUWERETHERE’s client basis is extended with all the clients
who have booked services of its partners. In this way, promotions made available by either partner are
automatically offered to every partner’s clients, as long as the bookings are made through the travel
agency. In return, the partners get publicity and more clients, since a person may be tempted to fly with
their company or book their hotel due to these promotions, thereby becoming also their clients.

Updating the client database. Ensuring that each partner’s clients automatically become WiSH-
YOUWERETHERE’s clients can be achieved by noting that this is exactly the problem underlying Ob-
server Down. Assuming Lrp and Ly have concepts Flyer and Guest, respectively, identifying their
clients, and that the agency’s clients will be stored as a predicate client in P, all that needs to be done
is to register client as an observer of Flyer and Guest, which, according to the pattern, is achieved by
ensuring

(Flyer, client) € Ap (Guest, client) € Ay .

Identifying pending payments. The designers of L4 resorted intensively to Definitions with
Holes, since many of the concepts they use can only be defined in the presence of a concrete client
database. In particular, £ contains a role hasDebt, which computes the total amount owed by a client
from information about specific purchases he has made and not paid for so far. The ontology collects
this information from the role toPay, about which it contains no membership axioms.

For example, if £4 is enriched with toPay(John,500e) and toPay(John,300e), then querying it for
hasDebt would return (possibly among others) the information hasDebt(John, 800e).

There are two ways of completing this definition. The more direct one stems from noting that toPay
should be an observer of adequate roles in Lr and L. We will assume that these roles are mustPayFlight
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and stayToPay. Applying twice Transversal Observer (which is the adequate pattern), one needs to
ensure that

(mustPayFlight, toPayF) € Ap
(toPayF, toPay) € W 4
(stayToPay, toPayH) € Ay
(toPayH, toPay) € W 4.

The major drawback of this solution is that it requires adding two dummy predicates to P whose only
purpose is to serve as go-between from both knowledge bases to L4.

An alternative solution is to create a single auxiliary predicate toPay in P and make toPay from £ 4
an observer of this predicate applying ObserverUp. In turn, we use the Polymorphic Entity pattern to
connect toPay to mustPayFlight and stayToPay. The resulting Mdl-program with observers is such that:

(mustPayFlight, toPay) € Ap
(stayToPay, toPay) € Ay
(toPay, toPay) € U 4.

As we will discuss later, this solution will also simplify the process of adding new partners to the agency.

Offering promotions. WISHYOUWERETHERE offers a number of promotions to its special clients.
For example, in February the agency offers them a 20% discount on all purchases. Because of the
partnership, the concept of special client is distributed among all partners: a client is a special client if
it fulfills one of the partners’ requirements — e.g. having traveled some number of miles with the airline
partner, or booked a family holiday in one of the partner’s hotels, or bought one of the agency’s pricey
packages. The partnership protocol requires that each knowledge base provide a concept identifying
which clients are eligible for promotions, so that the partners can change these criteria without requiring
WISHYOUWERETHERE to change its program.

This is a situation where the Lifting design pattern applies. Assuming that Lr uses topClient
for its special clients, Lp uses gold and P defines special, these three predicates are given the same
semantics through Lifting. Intuitively, this means that all three concepts equally denote all special
clients, regardless of where they originate. The application of the pattern translates to

(topClient, special) € Ap (—topClient, notSpecial) € Ap
(special, topClient) € ¥ (notSpecial, —topClient) € U g
(gold, special) € Ay (—gold, notSpecial) € Ay
(special, gold) € Uy (notSpecial, —gold) € Uy

Furthermore, in order to determine whether a particular client is entitled to promotions, it is useful to
give closed-world semantics to these predicates. Since they are all equivalent, we can do this very simply
in P by adding the rule

notSpecial(X) < not special(X).

Note that we did not need to apply the Closed-world pattern because special is a predicate from P,
where the semantics is closed-world: the application of Lifting ensures that gold and topClient, being
equivalent predicates, also have closed-world semantics.

In order for one of the partner companies to make its clients eligible for special promotions, its
ontology just needs to contain inclusion axioms partially characterizing special clients. For example, one
could have

Jflies.100000rMore C topClient € Lp
familyBooking C gold €Ly
special(X) « booked(X,Y"), expensive(Y) eP

A subtle issue now appears regarding the consistency problems that may arise from the use of the
Lifting pattern. Since this pattern identifies concepts from different knowledge bases, it does not a priori
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guarantee that the resulting knowledge bases are consistent, as we already discussed in [6]. However,
there are particular cases where consistency is guaranteed; one of them is when none of the knowledge
bases is allowed to contain instances of the negated concepts being lifted. In this setting, this means that
no partner is allowed to deny privileges to WISHYOUWERETHERE’s clients explicitly via its dedicated
concept (e.g. by including axioms such as —topClient(John) or young C —gold). This is perfectly in line
with the partnership protocol as stated above.

An example of a promotion offered by WISHY OUWERETHERE to special clients would be

20%Discount(X) « special(X) .

All special clients will benefit from this discount, regardless of who (the travel agency, the hotel partner
or the aviation company) decided that they should be special clients.

However, in some cases partners may want to deny their promotions to particular clients. For example,
the aviation company is offering 100 bonus miles to special costumers booking a flight on a Tuesday, but
this promotion does not apply to its workers.

In order to allow this kind of situation, partners may define a dedicated concept identifying the non-
eligible clients. Since all clients external to that partner are automatically eligible, this concept needs to
have closed-world semantics so that (in our example) Lp can include the rules

100BonusMiles C topClient M —blocked
worker C blocked

still giving the promotion to all clients from the other partners. Although each knowledge base can
enforce this semantics in its domain, in order to extend it to other clients the Closed- World pattern
must be applied, so we will have

(blocked, blockedF) € Ap
(nonBlockedF, —blocked) € ¥
nonBlockedF(X) « not blockedF(X) € P

Suppose that airline employee Ann qualifies for WISHY OUWERETHERE promotions because she spent
three weeks in Jamaica with her husband and their five children, hence gold(Ann) holds in £y and there-
fore Ann is a special client. She is therefore eligible for WISHY OUWERETHERE’s promotions, but she
will still not earn the bonus miles because it is Lz who decides whether someone gets that particular pro-
motion, and even though topClient(Ann) holds that knowledge base will not return 100BonusMiles(Ann).
However, she will earn the 20%Discount, since it is offered directly by WISHY OUWERETHERE.

Adding new partnerships. We now discuss briefly how new partners can be easily added to the
system later on, as this illustrates quite well the advantages of working both with design patterns and
in the context of Mdl-programs with observers.

Summing up what we have so far relating to the partnerships, the sets Ap, Ay, Yr and Uy are as
follows.

Ap:(Flyer, client) Agr:(Guest, client)
(mustPayFlight, toPay) (stayToPay, toPay)
(topClient, special) (gold, special)
(—topClient, notSpecial) (—gold, notSpecial)
(blocked, blockedF) (blocked, blockedH)

U p:(special, topClient) U p7:(special, gold)
(notSpecial, ~topClient) (notSpecial, ~gold)
(nonBlockedF, —blocked) (nonBlockedH, —blocked)
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Also, the application of the design patterns added the following rules to P.

nonBlockedF(X) <« not blockedF(X)
nonBlockedH(X) < not blockedH(X)

The similarity between Ar and Ag, and between Wy and Wy, is a clear illustration of the changes
required when future partners of WISHYOUWERETHERE are added to the system. Furthermore, the
names they use for each concept or role are not relevant — they just need to indicate how they identify
their clients, their clients’ debts, their special clients, and the clients they wish to exclude from their
promotions.

7 Elaborate design patterns

In this section, we give examples of more complex design patterns that show how the simpler ones
discussed previously can work together towards a common goal. This presentation has no claims to
being exhaustive; the reader is invited to study how other known design patterns could be adapted to
the setting of Mdl-programs in a similar way. As before, all patterns are defined within the context of
an Mdl-program with observers

(L, Lo}, Po{AL, - A { T, 0, 1)

7.1 Expediting component replacement

In some contexts, a component of a system may not be known or available at the time of implementation
of others, yet it is necessary to query it. A way to get around this is to use a prototype knowledge base
that will later on be connected to the concrete component in a straightforward way.

The same problem may also arise if one wishes to be able to replace a knowledge base with another
with a similar purpose, but whose concept and role names may be different.

Scenario. With the expansion of WISHYOUWERETHERE’s business, requests started coming in for
organized group tours. Therefore, the agency’s directors are working on establishing a collaboration with
a (single) bus rental company that will provide transportation for groups of fifty people.

The relationship between the travel agency and the bus company is not that of partnership, but
of outsourcing. This means that, on the one side, there will be only one bus company involved in the
process, and, on the other side, the specific company may change in the future.

To comply with these restrictions, the software developers added an empty knowledge base £; which
only fixes the names of the concepts and roles being used. In extending P, they implemented all queries
to the bus partner as dl-queries to this interface knowledge base, such as:

busAvailable(B, C, D) «—DL[; operatesOnCity](C),
DL[; busOnCity](B, C),
DLy[;freeOnDay|(B, D).

The concepts and roles of L£;’s syntax provide the interface that will be used to communicate with
the bus company’s knowledge base. In order to couple a concrete knowledge base Lp, the bus company
needs to provide the concepts and roles from Lp that correspond to the names of the interface’s concepts
and roles, e.g. a predicate freeBus corresponding to L£;’s freeOnDay. These will be connected with the
interface by means of multiple applications of Transversal Observer, yielding

(freeBus, freeOnDay™) € Ap
(freeOnDay ™, freeOnDay) € ¥,
(—freeBus, freeOnDay ™)
(freeOnDay ™, =freeOnDay)

EAB
ey
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(where freeOnDay™ and freeOnDay ™~ are auxiliary fresh predicate symbols introduced by the application
of the pattern), and similar for all other concepts and roles in the interface (namely operatesOnCity and

busOnCity).

Pattern (Straight) Adapter.
Problem. One wants to work with £ independently of its particular syntax.

Solution.
Add an empty interface knowledge base £; to KB using the desired concept and role names.

Connect each concept and role in £ with its counterpart in £ by means of an application of the
Transversal Observer pattern.

There is one important characteristic of this implementation of the usual Adapter design pattern:
the usual dl-program syntax for local extensions to dl-queries only works in the particular case where
the query is over a concept or role being directly extended. Because all queries go through the interface
knowledge base, where no axioms exist, any other extensions are lost.

Consider a simple example where the interface L; specifies two concepts P and (Q, which are made
concrete in Lo as A and B. Furthermore, Lo also contains the inclusion axiom A C B. Finally, P
contains the single fact thislsTrue(ofMe). In P, the direct query DLc[A WthislsTrue; B](X) would return
the answer X = ofMe, since L¢ is extended with A(ofMe) in the context of this query. However, the
corresponding indirect query (i.e. the same query, but passing through the adapter)

DL;[Pywpt, Pup ,Quqt,QUq , PWthislsTrue; Q](X)
after extending P with the rules

p*(X) «— DLc[; A[(X) ¢"(X) « DLc[; B](X)
p~ (X) < DLc[; - AJ(X) ¢ (X) — DLc[; ~B|(X)

as introduced by the concretization of the observer sets would still return no answer, since £y only knows
the facts about B that are directly given by Lo through ¢*.
Note, however, that the dl-atom DLc[A W thislsTrue; A|(X) is equivalent to

DL;[PWpt,Pup ,Quqt,Quq , P WthislsTrue; P)(X),

since the query is directly on the concept whose extent was altered. In practice, this is a common enough
situation that this issue is less restrictive than it may seem.

This is a restriction with respect to the full power of dl-programs; but the authors see this as a feature
of the Straight Adapter design pattern. Should a context arise where such flexibility is essential, then
this is not the right design pattern to apply.

In order to implement the typical, full-fledged Adapter pattern, one would have to move to a dif-
ferent context than Mdl-programs with observers. A possibility would be to implement it as a syntactic
mechanism that would have much more invasive effects on P. However, the authors feel that the more
restricted version presented above is still in spirit with the object-oriented philosophy behind Adapter.

7.2 Safeguarding potential changes

In a practical context, it is not uncommon to have a function whose definition is variable, for example
rotating cyclically among several possibilities. The pattern herein presented provides a clean way to
implement such a function in a way that minimizes changes to the program.
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Scenario. Apart from the fixed discounts offered by WISHY OUWERETHERE, the travel agency features
several on-and-off promotions that are not always available. A typical example are seasonal promotions,
for example a discount on beach resorts during the winter; or offers destined to even out irregularities
on sales, such as discounts for trips booked on a Monday.

In order to avoid changing the program on an almost daily basis to reflect the variations in the daily
offer, the software designers decided to enrich their Mdl-program with a dedicated ontology Ly that
determines which promotions are available at any given time. This information is obtained by querying
upon concept available, whose instances are the currently active promotions.

The predicate promotion is then defined by the following single rule, in P.

promotion(X,Y’) < DLy [;available](X), isEligible(X,Y")
This definition will be enriched by elegibility rules in P, e.g.:

isEligible(mondayDiscount, X) «topClient(X)
isEligible(winterVacation, X) «—topClient(X), wantsToBook(X,Y, Z),
winterMonth(Y), DL [; beachResort](Z)
isEligible(bigSale20%O0ff, X') «topClient(X), DL 4[; estimatedCost| (X, Z), bigSale(Z)

We leave the concrete implementation of the auxiliary predicates to the reader’s imagination. The
reasoner in Ly would be a more or less complicated engine that would e.g. look at the current date
in order to decide which instances of available hold. A simplistic (although not the most practical)
implementation would simply require an employee of WISHYOUWERETHERE to select the available
promotions from a list at the beginning of each workday. When the company decides to create a new
promotion, the changes required are simply to add new axioms to Ly (in order to indicate when it is
available) and a new elegibility rule to P (defining it).

Pattern Protected Variations.

Problem. There is a predicate p (in P) whose definition varies, but P should be protected from these
variations, in the sense that it should suffer minimal and easily identifiable modifications.
Solution.
If no Protected Variations knowledge base exists, add it to KB. Let L) be this knowledge base.
Define p with a set of rules, each one protected by a query to L; on a concept S.

Define S in L such that the satisfiable clauses of p are the ones corresponding to its current
definition.

In the example above, the roles of S and p in the above definition are played, respectively, by the
predicates available and promotion. This design pattern requires a dedicated knowledge base; however,
several applications of Protected Variations can use the same knowledge base, so there is no point
in having multiple dedicated knowledge bases. Also, this knowledge base does not have to be separate
from the rest of the Mdl-program: one could include the necessary concepts and roles (such as available
in our example) in an already existing general-purpose knowledge base.

The Protected Variations design pattern corresponds to the pattern with the same name in object-
oriented programming [19].

7.3 Beyond these design patterns

The presentation in these last sections does not by any means claim to be exhaustive. Design patterns
for several programming paradigms have been around for more than two decades, and dozens of different
patterns have been proposed and applied, often in very specific contexts.

The goal of this paper was to show how some of the most elementary design patterns — in the sense
that they are the basic building blocks for more complex ones — can be implemented within the framework
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of dl-programs. Among the more sophisticated design patterns, our selection took into account the ones
that can be more naturally formalized using Mdl-programs with observers.

When we presented the Adapter design pattern, we discussed some of the problems that may arise
in these implementations. To get the feeling for other issues which occur, we now briefly discuss the
Proxy design pattern. This pattern is used when one wants to control or restrict access to a resource,
for example a database containing sensitive information. In practice, this is not very different from the
Adapter design pattern — but Adapter is an algorithm-free pattern that just defines interfaces, whereas
an entity implementing Prozy is expected to do some processing before passing on the information it
receives.

If we attempt an implementation along the lines we have followed so far, it would be natural to
explore the possibility of a proxy knowledge base to serve as a mediator between two components. In the
setting of dl-programs, this is actually not possible to achieve directly, since all queries must go through
the logical program. The only other option is to encode the proxy in the logic program itself, forcing
every dl-query to the protected resource to be immediately preceded by some atoms implementing the
proxy — which from the Proxy design pattern perspective is not completely satisfactory.

There would be ways to go around this problem, namely by defining appropriate syntactic construc-
tions. Our motivation for defining Mdl-programs with observers was, primarily, to guarantee that all
dl-queries were appropriately extended, even the ones that were written after deciding that a concept or
role should be observing a predicate. As it turned out, the construction we proposed is powerful enough
to allow for elegant implementations of all the design patterns we discussed earlier. By defining other
adequate syntactic constructions, other design patterns may become easily accessible. Note that in the
solutions we proposed for all problems the necessary changes are localized: they consist of changing
dl-atoms (by means of adding pairs to ¥;) or adding rules to P (either directly, as in the case of Closed-
world, or by adding pairs to A;). In all cases, these changes are only reflected in P, and they can
be divided into two or three distinct types. This is in line with the whole philosophy of dl-programs:
there is an asymmetry between their components where the logic program is the orchestrator between
all components as well as its fagade: it is the only entity interacting with the outside world.

There is an aspect that cannot be overstressed: the sets A; and ¥; are syntactic sugar. As such, they
do not add to the expressive power of Mdl-programs, but they substantially increase their legibility and
internal structure. By working with an Mdl-program with observers, one can more easily understand the
core of the program (which is the logic program P) without being disturbed by the presence of myriads
of rules that connect P with the several knowledge bases. In particular, most of the design patterns we
presented can be expressed simply as adding specific pairs to carefully chosen observer sets A; and ¥; —
yielding a clean program that is also very easy to maintain and extend. At the end of the day, though,
the Mdl-program with observers simply translates into an Mdl-program.

8 Conclusions

We proposed a generalization of dl-programs to systems that connect several description logics by means
of a logic program. The resulting Mdl-programs are less expressive than other similar systems, e.g. multi-
context systems, but they still have a wide range of applicability. Being less general, Mdl-programs are
also simpler to use and reason about, inheriting many of the desirable properties which are already known
of dl-programs.

On top of Mdl-programs, we defined a syntactic construction (Mdl-programs with observers) that
supports communication between the logic program and the different knowledge bases in a structured
way, allowing one to externalize several communication aspects and focus on the development of the
algorithmic parts of the program. The advantages of using Mdl-programs with observers were made
clear by showing how several well-known design patterns from software engineering can be implemented
in a very elegant and straightforward way intensively using this syntactic mechanism. Note that it
has been argued that the study of design patterns can be a key ingredient in deciding what syntactic
extensions should be added to specific programming languages [13]. We feel that we have more than
justified the inclusion of observers as a syntactic tool in the context of Mdl-programs.

This paper is by necessity limited in its scope, and it is the authors’ intent to explore how more
sophisticated design patterns could be applied to Mdl-programs. In this process, it will probably be
necessary to introduce different syntactic constructions whose properties will have to be studied.
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Since Mdl-programs with observers share several features with multi-context systems, there being
some similarities between the former’s observer sets and the latter’s bridge rules, it would also be inter-
esting to explore how the mechanisms herein discussed can be applied to multi-context systems. However,
multi-context systems are a more complex environment with its own specific problems, which will also
have to be addressed in such a study.

Another aspect that will have to be discussed relates to the practical aspects of the usage of design
patterns. Ad hoc solutions to specific problems may be more efficient than the application of systematic
methods, but they tend to yield less generalizable and less extensible software applications. On the other
hand, the use of observers introduces higher complexity, especially when non-stratified negation (which
occurs in the examples discussed earlier) is involved. It is important to have a precise understanding of
the compromise between efficiency and quality obtained by a systematic use of design patterns.

The purpose of the present study, at this stage, is to show that design patterns, which have proved
essential in building quality software and establishing good programming practices, also have a place in
the world of the Semantic Web. One can foresee a future where there is a widespread usage of systems
combining description logics with rules, and the availability of systematic design methodologies is a key
ingredient to making this future a reality.
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