
Viewing dl-programs as multi-context
systems

Lúıs Cruz-Filipe,Rita Henriques and Isabel Nunes

DI–FCUL–TR–2013–05

DOI:10455/6895

(http://hdl.handle.net/10455/6895)

April 2013

Published at Docs.DI (http://docs.di.fc.ul.pt/), the repository of the
Department of Informatics of the University of Lisbon, Faculty of Sciences.

Viewing dl-programs as multi-context systems

Lúıs Cruz-Filipe Rita Henriques Isabel Nunes

April 18, 2013

Abstract

The combination of logic programs and description logic knowledge bases has been
a fertile topic of research in the last years, with the proposal of several different systems
that achieve this goal. In this paper, we look at two of these mechanisms, dl-programs
and multi-context systems, which address different aspects of this combination, and
include different, incomparable programming constructs. Despite this, we show that
every dl-program can be transformed into a multi-context system in such a way that
the different semantics for each paradigm are naturally related. As a consequence,
many useful constructions developed within the framework of dl-programs may be
automatically translated to equivalent constructions in the setting of multi-context
systems.

1 Introduction

Several approaches combining rules and ontologies have been proposed in the last years for
semantic web reasoning, e.g. [2, 8, 9, 10, 11, 13] among others. Ontologies are typically ex-
pressed through decidable fragments of function-free first-order logic with equality, offering a
very good ratio expressiveness/complexity of reasoning [1]. The addition of some kind of rule
capability in order to be able to express more powerful queries together with nonmonotonic
features (in particular, the negation-as-failure operator not) achieved by joining ontologies
and logic programming result in a very powerful framework for semantic web reasoning.

In this paper, we look at two of these systems: dl-programs [9, 10] and multi-context
systems (MCSs) [2], which address different aspects of this combination, and include incom-
parable programming constructs. One of the main differences is the structure of programs
– a dl-program is essentially a logic program that can query a description logic knowledge
base Σ and may “feed” its view of Σ with newly inferred facts, while MCSs consist of several
knowledge bases, with no restriction on the underlying languages, each declaring additional
rules that allow communication with the others. Moreover, dl-programs only allow one
knowledge base at a time, expressed in a particular description logic, while MCSs support
several knowledge bases, possibly expressed in different languages.

1

Despite these differences, we show that every dl-program can be transformed in a multi-
context system in such a way that different semantics for each paradigm are naturally re-
lated: answer-set semantics become grounded equilibria, whereas well-founded semantics
correspond to well-founded belief sets. As a consequence, many useful constructions devel-
oped within the framework of dl-programs may be automatically translated to equivalent
constructions in the setting of MCSs. Although this transformation is intuitive, and has been
informally described earlier, the contribution of this work is not only in making it precise,
but especially in studying its theoretical properties, namely regarding semantic aspects, and
discussing some practical implications. To the authors’ knowledge, these aspects have never
been addressed before.

The structure of the paper is as follows. Section 2 presents the two systems directly
related to our presentation: dl-programs and multi-context systems. In Section 3, we present
a translation from the former to the latter and prove several results relating their models.
Section 4 proves equivalences between the semantics of both systems, and Section 5 presents
and discusses some generalizations and applications of the previous results. Finally Section 6
concludes with some thoughts on the implications of our work.

2 Background

2.1 Description logic programs

In the last years, much effort has been put into combining description logics with rule-based
reasoning systems, an approach that is well-suited to modular, independent development of
multi-component systems.

One of the proposals in this direction was the introduction of dl-programs [9, 10]. A
dl-program is a pair KB = 〈Σ,P〉, where Σ is a description logic knowledge base, which we
will refer to simply as “knowledge base” from this point onwards, and P is a generalized logic
program – a function-free logic program with negation-as-failure, extended with dl-atoms in
rules. Formally, P is a set of rules of the form a ← b1, . . . , bk,not bk+1, . . . ,not bm, called
dl-rules, where a is an atom and b1, . . . , bm are atoms or dl-atoms. A dl-atom is of the
form DL[S1 op1 p1, . . . , Sm opm pm;Q](t), where each Si is either a concept or role of Σ, or a
special symbol in {=, 6=}; opi ∈ {],∪- }; each pi is a unary or binary predicate symbol of P
depending on the corresponding Si being a concept or a role; and Q(t) is a dl-query, that
is, it is either a concept inclusion axiom F or its negation ¬F , or of the form C(t), ¬C(t),
R(t1, t2), ¬R(t1, t2), = (t1, t2), 6= (t1, t2), where C is a concept, R is a role, t, t1 and t2 are
terms. The sequence S1 op1 p1, . . . , Sm opm pm is the input context of the dl-atom. We will
use the greek letter χ to denote generic input contexts.

The operators] and ∪- are used to extend the knowledge base Σ in the context of the
current dl-query. Intuitively, Sk] pk (resp., Sk ∪- pk) increases Sk (resp., ¬Sk) by the
extension of pk before evaluating the query. (This does not change Σ, only affecting P ’s
current view of Σ.)

The two components of a dl-program are kept independent, communicating only through

2

dl-atoms. So, although the two components function separately, giving dl-programs nice
modularity properties, there is a bidirectional flow of information via dl-atoms. We illustrate
the use of dl-programs by means of the following example from [11].

Example 1 Consider the dl-program KB = 〈Σ,P〉, where:

Σ : (≥ 2paperToReview.>) v Overloaded (i1)

Overloaded v ∀supervises+.Overloaded (i2)

{(a, b)} t {(b, c)} v supervises (i3)

P : good(X)←DL[; supervises](X, Y),

notDL[paperToReview] paper; Overloaded](Y) (r1)

overloaded(X)←not good(X) (r2)

paper(b, p1)← (r3)

paper(b, p2)← (r4)

We briefly recall this program’s intended meaning as explained in [11]. Axioms (i1)
and (i2) indicate that someone who has more than two papers to review is overloaded, and that
an overloaded person causes all their supervised persons to be overloaded as well. Axiom (i3)
defines the supervision hierarchy. Rule (r1) indicates that, if X is supervising Y and Y is not
overloaded, then X is a good manager. Rule (r2) indicates that, if X is not a good manager,
then X is overloaded.

In order to provide semantics for dl-programs, we first recall the notion of Herbrand base
of a(n extended) logic program P , denoted HBP , the set of all ground atoms consisting of
predicate symbols and terms that occur in P . The Herbrand base of a dl-program KB =
〈Σ,P〉, denoted HBKB, is similarly defined, except that constant symbols may also come
from the vocabulary of Σ. An interpretation I of KB relative to P is any subset of HBKB;
I is a model of, or satisfies, a ground atom or dl-atom a under Σ, denoted I |=Σ a, if the
following holds:

• if a ∈ HBKB then I |=Σ a iff a ∈ I;

• if a is a ground dl-atom DL[χ;Q](t) where χ = P1 op1 p1, . . . , Pm opm pm, then I |=Σ a
iff Σ(I;χ) |= Q(t), where Σ(I;χ) = Σ ∪

⋃i=1
m Ai(I) and, for 1 ≤ i ≤ m,

Ai(I) =

{
{Si(e) | pi(e) ∈ I}, if opi =]
{¬Si(e) | pi(e) ∈ I}, if opi = ∪-

An interpretation I is a model of a ground dl-rule r iff I |=Σ H(r) whenever I |=Σ B(r),
where H(r) and B(r) are the head and the body of rule r, respectively; I is a model of KB
iff I is a model of all ground rules of P .

3

Example 2 Given the dl-program KB of Example 1, its Herbrand base will be

HBKB = {good(t), overloaded(t) | t ∈ {a, b, c, p1, p2}}{paper(t1, t2) | t1, t2 ∈ {a, b, c, p1, p2}} .

This may seem a bit strange, since e.g. paper(a, c) or overloaded(p1) do not fit well with
our intended interpretation of the predicates paper and overloaded; but this is a side-effect of
the absence of types in logic programming.

Examples of interpretations for KB are:

• the empty set I1 = ∅;

• the set I2 = {paper(b, p1), paper(b, p2), overloaded(a)};

• or I3 = {paper(a, c), overloaded(b), good(p2)};

• or even I4 = {paper(b, p1), paper(b, p2)} ∪ {overloaded(t) | t ∈ {a, b, c, p1, p2}}.

It is easy to verify that only I4 is a model of KB. In particular, I1 and I3 do not satisfy
rules (r3) and (r4), while I2 does not satisfy rule (r2) with X = b.

As usual, a dl-program KB = 〈Σ,P〉 is positive if the rules in P do not contain negations.
Positive dl-programs enjoy the usual properties of positive logic programs, namely they have
a unique least model MKB that can be constructed by computing the least fixed-point of the
Herbrand transformation TKB, which is defined as the usual Herbrand transformation for
logic programs, resorting to Σ to evaluate dl-atoms. The dl-program in Example 1 is not a
positive program because of rules (r1) and (r2).

Answer-set semantics. The answer set semantics of (not necessarily positive) dl-programs
is defined again in analogy to that of logic programs. There are two possible generalizations,
yielding strong and weak answer set semantics; in this paper, we will only use the former,
and usually omit the adjective “strong”.

Given a dl-program KB = 〈Σ,P〉, we can obtain a positive dl-program by replacing P
with its strong dl-transform sPIΣ relative to Σ and an interpretation I ⊂ HBP . This is
obtained by grounding every rule in P and then (i) deleting every dl-rule r such that I |=Σ a
for some default negated a in the body of r, and (ii) deleting from each remaining dl-rule
the negative body. The informed reader will recognize this to be a generalization of the
Gelfond–Lifschitz reduct. Since KBI = 〈Σ, sPIΣ〉 is a positive dl-program, it has a unique
least model MKBI . A strong answer set of KB is an interpretation I that coincides with
MKBI .

Example 3 Consider again the dl-program KB and the interpretations I1, I2, I3 and I4

defined above. We can verify that I4 is an answer set for KB.
First, we need to compute sPI4Σ . Consider the ground instances of (r1); there are only

two cases when I4 |= DL[; supervises](X, Y): when X is a and Y is b, or when X is b
and Y is c, so all other ground instances of (r1) will be removed from sPI4Σ . Further-
more, I4 |= DL[paperToReview] paper; Overloaded](b) due to axiom (i1) from Σ, and I4 |=

4

DL[paperToReview] paper; Overloaded](c) by (i1) and (i2). Therefore, sPI4Σ contains no
ground instances of (r1).

As regards (r2), since I4 does not contain good(t) for any t, all its ground instances will
be included in sPI4Σ with their body removed. Finally, (r3) and (r4) are grounded rules with
no negative literals in their bodies, so they are copied to sPI4Σ unchanged. Thus, sPI4Σ is the
following program.

overloaded(a) overloaded(b) overloaded(c) overloaded(p1)
overloaded(p2) paper(b, p1) paper(b, p2)

Since sPI4Σ contains only facts, it is easy to compute the least model of KBI4 and check
that it coincides with I4. Therefore, I4 is an answer set for KB.

By comparison, consider the interpretation I2. It is easy to verify that sPI2Σ coincides
with sPI4Σ computed above, since in this case the construction of the reduct only depends on
the instances of paper and good included in the interpretation. Therefore, the least model of
KBI2 is again I4, and thus I2 is not an answer set for KB. The reader is invited to verify
that I4 is actually the only answer set for this dl-program.

An algorithm for computing strong (and weak) answer sets of dl-programs has been
implemented in the DL-plugin for dlvhex [7].

Well-founded semantics. Another possible semantics for dl-programs is well-founded se-
mantics, which again generalizes well-founded semantics for logic programs. There are several
equivalent ways to define this semantics; for the purpose of this paper, we define the well-
founded semantics of a dl-program KB = 〈Σ,P〉 by means of the operator γKB such that
γKB(I) is the least model of the positive dl-program KBI defined above.

This operator is anti-monotonic (if I ⊆ J , then γKB(I) ⊇ γKB(J)), so γ2
KB is monotonic

and therefore it has a least and greatest fixpoint, denoted lfp (γ2
KB) and gfp (γ2

KB), respectively.
An atom a ∈ HBP is well-founded if a ∈ lfp (γ2

KB) and unfounded if a 6∈ gfp (γ2
KB); the well-

founded semantics of KB is the set containing all well-founded atoms and the negations of
all unfounded atoms. Intuitively, well-founded atoms are true in every model of P , whereas
unfounded atoms are always false. Note that, unlike answer sets, the well-founded semantics
of KB may not be a model of KB.

Example 4 We quickly summarize the essential steps in computing the well-founded seman-
tics of the dl-program KB from Example 1.

First, we compute the least fixed point of γ2
KB. Beginning with J0 = ∅, we compute sPJ0

Σ .
This program contains two closed instances of rule (r1) for which J0 |= DL[; supervises](X, Y),
namely those with X = a and Y = b or X = b and Y = c.1 Also, sPJ0

Σ contains the facts
overloaded(t) for all t (since J0 does not contain good(t) for any t) and the rules (r3) and
(r4). The least model of KBJ0 is

J1 = {good(a), good(b), paper(b, p1), paper(b, p2)}{overloaded(t) | t ∈ {a, b, c, p1, p2}} .
1Note that J0 6|= DL[paperToReview] paper; Overloaded](Y) for any Y , since J0 contains no facts about

paper.

5

Now we compute sPJ1
Σ . This contains no instances of (r1): the two instances that were in-

cluded before are now removed because J1 |= DL[paperToReview]paper; Overloadedloaded](Y)
for Y = b and Y = c. Furthermore, since J1 |= good(a) and J1 |= good(b), sPJ1

Σ contains
only the facts overloaded(c), overloaded(p1) and overloaded(p2) as instances of (r2). The two
last rules are unchanged. The least model of KBJ1 is now

J2 = {paper(b, p1), paper(b, p2), overloaded(c), overloaded(p1), overloaded(p2)}

and this coincides with γ2
KB(J0).

Continuing this process, we compute sPJ2
Σ , which contains no instances of (r1) as in the

previous case, but includes all closed instances of overloaded(t) since J2 again contains no
facts about good. The least model of KBJ2 is

J3 = {paper(b, p1), paper(b, p2)} ∪ {overloaded(t) | t ∈ {a, b, c, p1, p2}} .

Finally, sPJ3
Σ can be seen to coincide with sPJ2

Σ , and therefore J3 = lfp (γKB); hence, J3 =
γKB(J3) = γ2

KB(J2) is also the least fixed point of γ2
KB.

The greatest fixed point of γ2
KB is actually easier to compute, and coincides again with

J3. Therefore, the well-founded semantics of KB contains all atoms in J3 together with
the negations of all other closed atoms in HBKB. In this case, all closed atoms are either
well-founded or unfounded, which in particular means that there is only one answer set (the
set I4 mentioned earlier, which coincides with J3) and the positive part of this well-founded
semantics (namely, J3) is a model of KB – see Theorem 5.9 of [9] for details.

2.2 Multi-context systems

More recently, multi-context systems [2] have been proposed as another, more general ap-
proach at combining different reasoning paradigms. A multi-context system allows informa-
tion among different logics to flow within the system through bridge rules.

Within this setting, a logic is defined as a triple Σ = (KBΣ,BS Σ,ACC Σ) where KBΣ

is the set of well-formed knowledge bases of Σ, BS Σ is the set of possible belief sets, and
ACC Σ : KBΣ → 2BSΣ is a function describing the semantics of the logic by assigning to each
element of KBΣ a set of acceptable sets of beliefs. Note that nothing is said about what
knowledge bases or belief sets are; the former are part of the syntax of the language, their
precise definition being left to Σ, while the latter intuitively represent the sets of syntactical
elements representing the beliefs an agent may adopt. Still, this definition is meant to be
abstract and general, so part of the purpose of KBΣ and BS Σ is defining these notions for
each logic Σ..

Given a set of logics Σ = {Σ1, . . . ,Σn}, a Σk-bridge rule, with 1 ≤ k ≤ n, has the form
s ← (r1 : p1), . . . , (rj : pj),not(rj+1 : pj+1), . . . ,not(rm : pm), where 1 ≤ rk ≤ n, pk is
an element of some belief set of Σrk , and kb ∪ {s} ∈ KBk for each kb ∈ KBk. A multi-
context system (MCS) M = 〈C1, . . . , Cn〉 is a collection of contexts Ci = (Σi, kbi, bri) where
Σi = (KB i,BS i,ACC i) is a logic, kbi is a knowledge base (an element of KB i) and bri is a
set of Σi-bridge rules over {Σ1, . . . ,Σn}.

6

Since bridge rules refer to other contexts, they may add information to a context based on
beliefs in other contexts. Considering fixed the above MCS M = 〈C1, . . . , Cn〉, a bridge rule is
applicable in a belief state S = 〈S1, . . . , Sn〉, where each Si is an element of BSi, iff pi ∈ Sri for
1 ≤ i ≤ j and pk 6∈ Srk for j+1 ≤ k ≤ m. The semantics of MCSs is based upon the concept
of equilibrium, which intuitively represents a belief state of the MCS where for each context
Ci the selected belief set is among the acceptable belief sets for Ci’s knowledge base together
with the heads of Ci’s applicable bridge rules. Formally, a belief state S = 〈S1, . . . , Sn〉 of M
is an equilibrium iff the condition Si ∈ ACC i(kbi∪{head(r) | r ∈ bri applicable in S}) holds
for 1 ≤ i ≤ n. An equilibrium is minimal if it is not a superset of any other equilibrium.

Here again, the reduct of the program underlying an MCS, which is a positive program,
is used to compute the MCS’s minimal model. Reducts are calculated over reducible MCSs,
so first we define the notion of reducibility w.r.t. a logic, a context and, finally, an MCS.

A logic Σ = (KBΣ,BS Σ,ACC Σ) is called reducible if (1) there is KB∗Σ ⊆ KBΣ such
that the restriction of Σ to KB∗Σ is monotonic2; (2) there is a reduction function redΣ :
KBΣ × BS Σ → KB∗Σ such that for each k ∈ KBΣ and S, S ′ ∈ BS Σ: (a) redΣ(k, S) =
k whenever k ∈ KB∗Σ; (b) redΣ is anti-monotonic in the second argument; and (c) S ∈
ACC Σ(k) iff ACC Σ(redΣ(k, S)) = {S}.

A context C = (Σ, kb, br) is reducible if (1) its logic is reducible; (2) for all H ⊆ {head(r) |
r ∈ br} and belief sets S, redΣ(kb ∪ H,S) = redΣ(kb, S) ∪ H. A multi-context system is
reducible if all of its contexts are reducible.

Grounded equilibria. A definite MCS is a reducible MCS in which bridge rules are mono-
tonic (that is, they do not contain not) and knowledge bases are in reduced form (that is,
kbi = redi(kbi, S) for all i and every S ∈ BS i). Every definite MCS has a unique minimal
equilibrium [2], which we will denote by Eq(M).

For non-definite MCSs, we resort to a generalization of the Gelfond–Lifschitz reduct to the
multi-context case. If M = 〈C1, . . . , Cn〉 is a reducible MCS and S = 〈S1, . . . , Sn〉 is a belief
state of M , the S-reduct of M is MS = 〈CS

1 , . . . , C
S
n 〉, such that CS

i = (Σi, red(kbi, Si), br
S
i).

Here, brSi results from bri by deleting (1) every rule with some not (k : p) in the body such
that p ∈ Sk, and (2) all not literals from the bodies of remaining rules. In [2], it is proved
that MS is definite; if S = Eq(MS), then S is a grounded equilibrium of M .

If M is a definite MCS, then its minimal equilibrium is its only grounded equilibrium;
in other cases, several grounded equilibria (or none) may exist. It is also easy to verify that
grounded equilibria of M are indeed equilibria of M .

Well-founded semantics. The well-founded semantics for reducible MCSs is also defined
in [2], and is based on the operator γM(S) = Eq(MS), defined for each M such that, for each
logic Σi in any of M ’s contexts, BS i has a least element. Here again, γM is anti-monotonic,
so γ2

M is monotonic and therefore it has a least fixpoint, denoted lfp (γ2
M). Following what is

done for logic programs, the well-founded semantics of M – WFS (M) – is lfp (γ2
M). It should

be pointed out that WFS(M) is not necessarily an equilibrium: informally, it contains the

2A logic Σ is said to be monotonic if ACCΣ(kb) is always a singleton set, and kb ⊆ kb′ implies that the
only element of ACCΣ(kb) is a subset of the only element of ACCΣ(kb′). This coincides with the usual
notion of monotonic logic.

7

knowledge that is common to all equilibria, but being an equilibrium is not preserved by
intersection. One can easily obtain an example by picking a dl-program whose well-founded
semantics is not an equilibrium (see e.g. [4]) and applying the translation we define in the
next section.

The next section will detail how dl-programs can be translated in MCSs, illustrating this
construction with the MCS generated from the dl-program in Example 1 above and providing
examples of the different concepts introduced at this stage.

Several other mechanisms for combining rules and ontologies have been proposed, but
are outside the scope of this paper. The interested reader can find a more comprehensive
overview of the different approaches in the introduction of [12].

3 From dl-programs to multi-context systems

There are two essential differences between dl-programs and multi-context systems: the
former only allow the combination of a logic program with a description logic knowledge
base, whereas the latter allow any number of different systems to be joined together; but
the former allow for local changes to the knowledge base, via input contexts3 in dl-atoms,
whereas the interaction within the latter is global, since bridge rules do add new inferences
to the context.

Because of these two differences, the two systems have different kinds of expressiveness.
In spite of this, we can generate a multi-context system M = M(KB) from a given dl-program
KB = 〈Σ,P〉. There are two steps in this process.

1. We split P in its purely logical part and its communication part, translating rules that
contain dl-atoms into bridge rules.

2. For each distinct input context χ appearing in P , we create a different copy of the
knowledge base, corresponding to the view of the knowledge base within the dl-atoms
containing χ.

Although the essential idea behind this construction is already suggested in [3], the
authors’ purpose in that paper is simply to justify that multi-context systems are a general-
ization of dl-programs, and therefore they do not study the construction in detail. Our goal
is different, however, so we begin by making this definition precise.

Definition 1 Let KB = 〈Σ,P〉 be a dl-program and χ1, . . . , χn be the distinct input contexts
occurring in dl-atoms in P.

1. The translation σKB of literals and dl-atoms is defined as follows: if L is a literal, then
σKB(L) = (0 : L); for dl-atoms, σKB(DL[χi;Q](t)) = (i : Q(t)); and for their negations
σKB(notDL[χi;Q](t)) = not(i : Q(t)).

The translation of P is the context C0 = 〈L0, kb0, br0〉 where:

3Recall that, if DL[χ;Q](t) is a dl-atom, χ is its input context and Q is its dl-query.

8

• L0 = 〈KB0,BS 0,ACC 0〉 is the logic underlying P, where KB0 is the set of all logic
programs over P’s signature, BS 0 is the power set of HBP , and ACC 0 assigns each
program to the set of its models;

• kb0 is P−, the set of rules of P that do not contain any dl-atoms;

• br0 contains p← σKB(l1), . . . , σKB(lm) for each rule p← l1, . . . , lm in P \ P−.

2. For each input context χi = P1 op1 p1, . . . , Pk opk pk, with i = 1, . . . , n, the context
Ci = 〈L, kb, bri〉 is defined as follows.

• L = 〈KB,BS,ACC〉 is the description logic underlying Σ, with KB the set of all
ontologies over Σ’s signature; BS contains all sets of dl-queries to Σ; and ACC
assigns to each ontology the set of dl-queries it satisfies.4

• kb is Σ.

• For j = 1, . . . , k, bri contains Pj ← (0 : pj), if opj =], or ¬Pj ← (0 : pj), if
opj = ∪- .

Note that L and kb are the same for all contexts originating from Σ.

3. The multi-context system generated by KB is M(KB) = 〈C0, C1, . . . , Cn〉.

The first context in M(KB) is a logic program with the same underlying language of P .
This implies that any interpretation I of P is an element of BS 0, and vice-versa. We will
use this fact hereafter without mention.

Example 5 Recall the dl-program KB from Example 1. For the purpose of generating an
MCS from KB, observe that there are two different input contexts in this program, χ1 = ε
and χ2 = paperToReview] paper. Also, (r1) is the only rule in P containing dl-atoms, so it
will be the only rule not present in C0 = P−.

The generated multi-context system M(KB) is 〈C0, C1, C2〉, where:

• C0 = 〈L0, {r2, r3, r4}, {good(X)← (1 : supervises(X, Y)),not(2 : Overloaded(Y))}〉

• C1 = 〈L,Σ, ∅〉

• C2 = 〈L,Σ, {paperToReview(X, Y)← (0 : paper(X, Y))}〉

Just as we can generate a multi-context system M(KB) from any dl-program KB, we can
generate a belief state for M(KB) from any interpretation of KB.

Definition 2 Let KB = 〈Σ,P〉 be a dl-program and I an interpretation of KB. The belief
state generated by I is SKB(I) = 〈SI0 , SI1 , . . . , SIn〉 of M(KB), where SI0 = I and, for i =
1, . . . , n,

SIi = ACC(Σ ∪ {P (t) | I |= p(t), P] p ∈ χi} ∪ {¬P (t) | I |= p(t), P ∪- p ∈ χi}) .
4Formally, we can define ACC as computing the set of logical consequences of the ontology and restricting

it to those formulas that are dl-queries.

9

It is straightforward to verify that SKB(I) is a belief state of M(KB). When there is only
one dl-program under consideration, we omit the subscript in SKB.

Example 6 Recall the interpretations for the dl-program KB from Example 2. The belief
states generated by these interpretations all contain the interpretation itself as belief set for
C0 and B = {supervises(a, b), supervises(b, c)} as belief set for C1 (since χ1 = ∅ and this is the
knowledge base corresponding to Σ). In the case of I1, this is also the belief set for C2, since
I1 satisfies no input predicates in χ2. Thus, S(I1) = 〈∅, B, {supervises(a, b), supervises(b, c)}〉.

Interpretation I2 satisfies paper(b, t1) and paper(b, t1), whence paperToReview(b, t1) and
paperToReview(b, t2) will be included in the belief set for C2, together with its consequences –
namely, Overloaded(b) and Overloaded(c), applying axioms (i1) and (i2), respectively. Thus:

S(I2) = 〈I2, B, {supervises(a, b), supervises(b, c), paperToReview(b, t1),

paperToReview(b, t2),Overloaded(b),Overloaded(c)}〉

The cases of I3 and I4 are very similar, and the reader can check that:

S(I3) = 〈I3, B, {supervises(a, b), supervises(b, c), paperToReview(a, c)}〉
S(I4) = 〈I4, B, {supervises(a, b), supervises(b, c), paperToReview(b, t1),

paperToReview(b, t2),Overloaded(b),Overloaded(c)}〉

In the previous example, one can see that S(I4) is the only belief state that is also an
equilibrium of M(KB); recall that I4 was the only interpretation that was also a model of
KB. This suggests that there are very close connections between I and S(I), which we will
now prove formally.

Lemma 1 Let KB = 〈Σ,P〉 be a dl-program and DL[χi : Q](t) be a ground dl-atom in P.

1. For any interpretation I, I |= DL[χi : Q](t) iff Q(t) ∈ SIi .

2. If S = 〈S0, S1, . . . , Sn〉 is an equilibrium of M(KB) and 1 ≤ i ≤ n, then Q(t) ∈ Si iff
S0 |= DL[χi : Q](t).

Proof. The first equivalence is straightforward, since the construction of SIi mimicks the
definition of the semantics of KB. The second equivalence is a matter of checking that
semantics of dl-programs and the definition of equilibrium are compatible. �

Theorem 1 Let KB = 〈Σ,P〉 be a dl-program.

1. If I is a model of KB, then S(I) is an equilibrium of M(KB).

2. If S = 〈S0, . . . , Sn〉 is an equilibrium of M(KB), then S0 is a model of KB.

10

Proof.

1. Suppose that I is a model of KB and let S(I) = 〈SI0 , SI1 , . . . , SIn〉 be the belief state
generated by I. For each i, we need to show that SIi is a belief set of kbi and that
s ∈ SIi whenever the bridge rule s← σ(l1), . . . , σ(lk) ∈ bri is applicable in M(KB).

Consider first the case i = 0. Since SI0 = I is a model of all the rules in P , it follows
that I satisfies every rule in kb0 = P−. Let s ← σKB(l1), . . . , σKB(lk) be a bridge rule
in br0; this must originate from a rule s← l1, . . . , lk in P \P−. Assume that the bridge
rule is applicable in S(I); for each lj, there are three possibilities: (1) lj is a regular
literal, and then I |= lj; (2) lj is DL[χm;Q](t) and Q(t) ∈ SIm, whence I = SI0 |= lj by
Lemma 1; (3) lj is notDL[χm;Q](t) and Q(t) 6∈ SIm, whence I = SI0 6|= DL[χm;Q](t)
by Lemma 1, and therefore I |= lj. Thus, I satisfies the body of the rule, hence
SI0 = I |= s.

Suppose now that i 6= 0. By construction, SIi = ACC(Σ ∪ {P (t) | I |= p(t), P] p ∈
χi} ∪ {¬P (t) | I |= p(t), P ∪- p ∈ χi}), which is precisely the (unique) model of Σ
together with the heads of the bridge rules applicable in S(I).

Therefore S(I) is an equilibrium of M(KB).

2. Suppose that S = 〈S0, S1, . . . , Sn〉 is an equilibrium of M(KB). Since S0 is a model of
kb0 extended with the heads of bridge rules in br0 which are applicable in S, it follows
that S0 satisfies all the rules of kb0 = P−.

Let p← l1, . . . , lk be a rule in P \ P−. Then p← σKB(l1), . . . , σKB(lk) is a bridge rule
in br0. Again, if S0 satisfies the body of the rule, then the corresponding bridge rule is
applicable in S: for regular literals this is immediate (the condition is the same), while
for dl-atoms and their negations this is again Lemma 1. Hence S0 is also a model of
the remaining rules in P .

Therefore S0 is a model of KB. �

Corollary 1 If S = 〈S0, . . . , Sn〉 is an equilibrium of M(KB), then S(S0) = S.

This result allows us to state all future equivalences in terms of models of P , since any
equilibrium S of M(KB) is uniquely defined from its first component.

Furthermore, this correspondence preserves inclusions, so we also have the following
relationship.

Theorem 2 Let KB = 〈Σ,P〉 be a positive dl-program. Then I is the least model of KB iff
S(I) is a minimal equilibrium of M(KB).

Proof.

(⇒) Suppose that I is a least model of KB, and let S ′ = 〈S ′0, S ′1, . . . , S ′n〉 be an equilibrium
of M(KB). By Theorem 1, S ′0 is a model of P , and since I is minimal, it follows that
I ⊆ S ′0. Suppose also that S(I) is not minimal; then S ′0 ⊆ I; hence S ′0 = I. By the

11

corollary proved above, it follows that S ′ = S(I), which is a contradiction. Hence S(I)
is minimal.

(⇐) Suppose that S(I) = 〈SI0 , SI1 , . . . , SIn〉 is a minimal equilibrium of M(KB), and let
I ′ be a model of KB. Let S(I ′) be the corresponding equilibrium of M(KB); then
I = SI0 ⊆ SI

′
0 = I ′ by minimality of S, hence I is a least model of P . �

4 Equivalence between semantics

We now show that the semantics for dl-programs have a precise correspondence with the
semantics of multi-context systems: strong answer sets are equivalent to grounded equilibria,
and the well-founded semantics for both systems are strongly related. This should not
come as a big surprise: both the strong-dl transform of dl-programs and the reduct of a
multi-context system are generalizations of the Gelfond–Lifschitz transform of ordinary logic
programs.

Throughout this section, let KB = 〈Σ,P〉 be a dl-program and M(KB) be the multi-
context system generated by KB, where M(KB) = 〈C0, C1, . . . , Cn〉 and Ci = 〈Li, kbi, bri〉
for i = 0, . . . , n.

Proposition 1 M(KB) is reducible, with KB∗0 the set of positive programs, red0(k, S) = kS,
computing the Gelfond–Lifschitz transform of k relative to S, KB∗i = KBi and redi(k, S) = k
a projection function.

Proof.

1. The logic L0 is reducible, with KB∗0 the set of positive programs and reduction function
red0(k, S) = kS, computing the Gelfond–Lifschitz transform.

We need to show that the conditions for being a reducible logic hold. These are just
well-known facts in logic programming, namely:

• positive logic programs are monotonic;

• the Gelfond–Lifschitz transform of a positive logic program is itself;

• if S ⊆ S ′, then kS
′ ⊆ kS;

• S is a model of a (general) logic program k iff it is a model of kS.

2. The context C0 is reducible.

We need to show that red0(kb∪H, I) = red0(kb, I)∪H, for every interpretation I and
any set H of heads of rules in br0. But H consists solely of facts (rules with empty
body), which are unaltered by the Gelfond–Lifschitz transform, hence this equality
holds.

12

3. For i = 1, . . . , n, the context Ci is reducible via the identity function.

Since description logics are monotonic, we can take KB∗i = KB i, and the identity
function trivially satisfies all the reducibility conditions. �

We now look closely at the relationship between the strong dl-transform of P and the
reduction of M(KB). The former generates a subsystem of the latter in the following sense.

Definition 3 Consider two multi-context systems M = 〈C1, . . . , Cn〉 and M ′ = 〈C ′1, . . . , C ′m〉.
We say that M ′ is a subsystem of M , M ′ ⊆ M , if there exists an injective function
ϕ : {1, . . . ,m} → {1, . . . , n} such that C ′i is Cϕ(i) with every index j in brϕ(i) replaced
by ϕ(j) for 1 ≤ i ≤ m.

Let I be an interpretation of KB, MS(I) =
〈
C

S(I)
0 , C

S(I)
1 , . . . , C

S(I)
n

〉
be the S(I)-reduct

of M(KB), and KB′ = 〈Σ, sP I
Σ〉 be the strong dl-transform of P relative to Σ and I, with

M ′ = M(KB′) = 〈C ′0, C ′1, . . . , C ′m〉 the corresponding multi-context system.

Proposition 2 M ′ is a subsystem of MS(I); also, it is a definite context.

Proof. To see that M ′ is a subsystem of MS(I), we first characterize M ′. Since the set
of input contexts χ′i in sP I

Σ is, in general, a subset of the χj in P (the removal of some dl-
atoms and some dl-rules may have caused some input contexts to cease to occur), the indices
in M(KB) and M ′ will not coincide. Let ϕ : {1, . . . ,m} → {1, . . . , n} be the appropriate
renaming function, i.e. such that χ′i = χϕ(i).

1. C ′0 is C
S(I)
0 , with every index i 6= 0 in br0 replaced by ϕ(i).

This can be seen by observing that the rules removed from P in the construction of
sP I

Σ correspond precisely to the rules removed from C0 in the construction of C
S(I)
0 .

Consider a ground rule r obtained from grounding a rule in P . If r does not contain
dl-atoms, then r ∈ sP I

Σ iff r ∈ (P−)I = red0(kb0, I).

Suppose that r contains dl-atoms. Then r will not be included in sP I
Σ if r contains a

negative literal l such that I 6|= l. There are two cases: if l is a regular literal ¬p, this
means simply that I |= p, hence p ∈ SI0 = I; if l is ¬DL[χi;Q](t), then by Lemma 1
Q(t) ∈ SIi . In either case, the corresponding bridge rule will be removed from br0. This
reasoning is reversible, so the converse implication also holds. If those conditions do
not hold, then r is included in sP I

Σ by removing its negative literals – and since σKB
transforms negative literals into negative literals, the bridge rule obtained is the same
as removing all negative literals from the bridge rule derived from r.

2. C ′i = C
S(I)
ϕ(i) .

The only non-trivial part of this equality regards the bridge rules. But all bridge rules
in C ′i are of the form (¬)P ← (0 : p), which do not contain negations in their body, so
they are never removed.

13

This shows that M ′ is a subsystem of MS(I). The fact that it is a definite multi-context
system is a straightforward consequence of the definition of sP I

Σ. �

From an interpretation J ofKB, we can generate belief states forM andM ′; to distinguish
them, we will write the subscripts in S explicitly.

Proposition 3 For any interpretation J of KB, SKB(J) is a minimal equilibrium of MSKB(I)

iff SKB′(J) is a minimal equilibrium of M ′.

Proof. The direct implication is straightforward.
For the converse implication, note that from an equilibrium S = 〈S0, S1, . . . , Sn〉 of

MSKB(I) we can construct an equilibrium S ′ = 〈S0, Sϕ(1), . . . , Sϕ(m)〉 of M ′. By minimality

of SKB′(J), J = S ′J0 ⊆ S0; therefore, if S0 ⊆ SJ0 = J , we would again have S0 = J , whence
S = SKB(J). �

Corollary 2 Let S = 〈S0, S1, . . . , Sn〉 be a minimal equilibrium of MSKB(I). Then S =
SKB(S0).

Proof. Suppose S = 〈S0, S1, . . . , Sn〉 is a minimal equilibrium of MSKB(I) . From S, we
can construct a minimal equilibrium S ′ =

〈
S0, Sϕ(1), . . . , Sϕ(m)

〉
as in Proposition 3, which

is a minimal equilibrium of M ′. By Corollary 1, S ′ = SKB′(S0), whence by Proposition 3,
it follows that SKB(S0) is also a minimal equilibrium of MSKB(I) . But MSKB(I) is a definite
multi-context system, so it only has one minimal equililibrium. Hence S = SKB(S0). �

Theorem 3 I is a strong answer set for KB iff S(I) is a grounded equilibrium of M(KB).

Proof. I is a strong answer set for KB iff I is the least model of KB′ iff SKB′(I) is a minimal
equilibrium of M ′ iff SKB(I) is a minimal equilibrium of MSKB(I) iff SKB(I) is a grounded
equilibrium of M(KB). �

Both well-founded semantics for dl-programs and well-founded equilibria for multi-context
systems are defined in terms of an anti-monotonic operator that computes the minimal model
of the adequate generalization of the Gelfond–Lifschitz transform of its argument. We now
make this correspondence precise.

Proposition 4 For every interpretation I of KB, γM(S(I)) = S (γKB(I)).

Proof. Let I be an interpretation ofKB. By definition, γM(S(I)) is the minimal equilibrium
of MS(I), the reduct of M relative to S(I), hence γM(S(I)) may be written as SKB(J) for some
J . By Proposition 3, SKB′(J) is a minimal equilibrium of M(KB′), with KB′ = 〈Σ, sP I

Σ〉, and
by Theorem 2 J is the least model of KB′, hence J = γKB(I) as we wanted to show. �

Theorem 4 I is the well-founded semantics of KB iff S(I) is the well-founded equilibrium
of M(KB).

Proof. The proof of this result amounts to showing that lfp (γ2
M) = S(lfp (γ2

KB)).

14

1. For every interpretation I of KB and every n > 0,

γnM(S(I)) = S (γnKB(I)) .

For n = 1 this is simply Proposition 4. Assume the equality holds for n; then

γn+1
M (S(I)) = γM (γnM(S(I))) = γM (S (γnKB(I))) = S (γKB (γnKB(I))) = S

(
γn+1
KB (I)

)
,

where the second equality holds by induction hypothesis and the third by Lemma 4.

2. Let ⊥ = 〈∅, ∅, . . . , ∅〉 be the least belief state of M . Note that it is not true, in general,
that S(∅) = ⊥, hence we cannot invoke the previous result.

However, ⊥ v S(∅), where v is pointwise set inclusion. By monotonicity of γ2
M ,

it follows that γ2n
M (⊥) v γ2n

M (S(∅)) = S (γ2n
KB(∅)) by the previous result. Therefore,

lfp (γ2
M) v S (lfp (γ2

KB)).

From Corollary 2, we can write lfp (γ2
M) as S(J) for some interpretation J , since γM is

defined as the minimal equilibrium of a reduct of M . It follows that S(J) = γ2
M(S(J)) =

S (γ2
KB(J)), and hence J is a fixpoint of γ2

KB (since S is injective). Therefore lfp (γ2
KB) v

J , and by monotonicity of S it follows that S (lfp (γ2
KB)) v S(J) = lfp (γ2

M). �

5 Generalizations and applications

We now look at generalizations and applications of the results presented above. We extend
the mechanism for generating a multi-context system from a dl-program to multi-dl-programs
and their syntactic extensions [5], and show how this mechanism allows constructions orig-
inally proposed for (multi-)dl-programs to be automatically ported to MCSs by means of a
concrete example.

5.1 Multi-dl-programs

Multi-dl-programs, Mdl-programs for short, were introduced in [5] as a natural extension
of dl-programs where several distinct description logic knowledge bases are available –
an idea that had already been tackled e.g. in [6]. Formally, an Mdl-program is a pair
〈{Σ1, . . . ,Σm},P〉, where each Σi is a description logic knowledge base and P is a logic
program whose rules can contain multi-dl-atoms (Mdl-atoms, for short). An Mdl-atom is
simply a dl-atom annotated by an index that indicates the knowledge base the query should
be addressed to: the semantics of e.g. DL3[χ;Q](t) is defined as the semantics of DL[χ;Q](t)
in a traditional dl-program with knowledge base Σ3.

An Mdl-program KB = 〈{Σ1, . . . ,Σm},P〉 generates a multi-context system M(KB) in
a similar way as a dl-program. For each i = 1, . . . ,m, we consider the set χi1, . . . , χ

i
ni

of input contexts in Mdl-atoms querying Σi. The translation σKB of literals and Mdl-
atoms now requires a sequential enumeration ψ of the input contexts in P .5 If L is a

5In other words, ψ maps (i, j) to the position χi
j appears in the sequence of all input contexts in P.

15

literal, then σKB(L) = (0 : L); for Mdl-atoms, σKB(DLi[χ
i
j;Q](t)) = (ψ(i, j) : Q(t)); and

σKB(notDLi[χ
i
j;Q](t)) = not(ψ(i, j) : Q(t)). The translation of P and each Σi is then the

same as for dl-programs (using this new σKB), and the multi-context system generated by
KB contains all these contexts.

The semantics for Mdl-programs are defined in exactly the same way as for dl-programs.
Again, an interpretation I for KB generates a belief state SKB(I) of M(KB) by taking SI0 = I
and SIψ(i,j) to be

ACC(Σi ∪ {P (t) | I |= p(t), P] p ∈ χij} ∪ {¬P (t) | I |= p(t), P ∪- p ∈ χij}) ,

and the following results are straightforward.

Theorem 5 Let KB = 〈{Σ1, . . . ,Σm},P〉 be an Mdl-program and I be an interpretation for
KB.

1. If I is a model of KB, then S(I) is an equilibrium of M(KB).

2. If S = 〈S0, . . . , Sn〉 is an equilibrium of M(KB), then S0 is a model of KB.

3. If KB is positive, then I is the least model of KB iff S(I) is a minimal equilibrium of
M(KB).

4. I is a strong answer set for KB iff S(I) is a grounded equilibrium of M(KB).

5. I is the well-founded semantics of KB iff S(I) is the well-founded equilibrium of M(KB).

5.2 Extensions to Mdl-programs

Often when working with an Mdl-program, one wishes to observe predicates from one com-
ponent in another, e.g. to have a predicate p in P such that p(t) holds whenever Σi proves
S(t) for some concept S. This is achieved by adding the rule p(X) ← DLi[;S](X) (or the
binary equivalent, if S is a role) to P .

Reciprocally, one may want to observe p (or ¬p) in Σi using a concept or role S. In order
to achieve this, one has to add S] p (or S ∪- p) to every Mdl-atom querying Σi in KB. This
poses consistency issues during the development of an Mdl-program: if at some stage one
decides that S is an observer of p, one has to remember to add S] p (or S ∪- p) to every
future Mdl-atom querying Σi. It is a well-known fact in the programming community that
this kind of constraint is one of the major sources of errors in software design.

In order to encode this kind of global changes, the authors introduced observers in [5].
An observer is a pair (S, p) or (p, S), where S is a concept or role from Σi and p is a
predicate of the same arity from P , with intended meaning that the second component of
the pair should include all instances of the first. An Mdl-program with observers is then
〈{Σ1, . . . ,Σm},P , {Λ1, . . . ,Λm}, {Ψ1, . . . ,Ψm}〉, where Λi and Ψi collect the observers from
and to each Σi. In turn, from an Mdl-program with observers we obtain an Mdl-program〈
{Σ1, . . . ,Σm},PΨ1,...,Ψm

Λ1,...,Λm

〉
where PΨ1,...,Ψm

Λ1,...,Λm
is obtained from P by:

16

• adding the rule p(X)← DLi[;S](X) for each 〈S, p〉 ∈ Λi;

• in each dl-atom DLi[χ;Q](t) (including those added in the previous step), adding S]p
to χ for each 〈p, S〉 ∈ Ψi and S ∪- p to χ for each 〈p,¬S〉 ∈ Ψi.

We have extended dlvhex with the capability of processing several ontologies, and thereby
computing answer sets of Mdl-programs. Furthermore, a pre-processor module was added
to the DL-plugin, allowing the user to write Mdl-programs with observers that are expanded
into (plain) Mdl-programs as described above.

Clearly, we can translate an Mdl-program with observers to a multi-context system in
two steps. More interestingly, we can also define a direct translation as follows.

Definition 4 The multi-context system M(KB) generated by the Mdl-program with observers
KB = 〈{Σ1, . . . ,Σm},P , {Λ1, . . . ,Λm}, {Ψ1, . . . ,Ψm}〉 is obtained as follows.

1. Construct M = M(〈{Σ1, . . . ,Σm},P〉).

2. If necessary, add contexts to M corresponding to Mdl-atoms with empty input context
for each Σi. For each i, let this context be Ci∗.

6

3. For each (S, p) ∈ Λi, adding the bridge rule p← (i∗ : S) to br0.

4. For each (p, S) ∈ Ψi, adding the bridge rule S ← (0 : p) to each set brψ(i,j), with
j = 1, . . . , ni, and to bri∗.

This definition captures the intended meaning of the observers, as expressed by the
following result.

Theorem 6 Let KB = 〈{Σ1, . . . ,Σm},P , {Λ1, . . . ,Λm}, {Ψ1, . . . ,Ψm}〉 be an Mdl-program
with observers. Then

M(KB) = M
(〈
{Σ1, . . . ,Σm},PΨ1,...,Ψm

Λ1,...,Λm

〉)
.

Proof. The construction of
〈
{Σ1, . . . ,Σm},PΨ1,...,Ψm

Λ1,...,Λm

〉
consists of two steps.

The first step adds Mdl-atoms to P with the empty context, thereby ensuring that this
context occurs in P , and adds a rule to P that is translated to the bridge rule added in
step 3 of the construction of M(KB).

The second step adds S]p to χij for each 〈p, S〉 ∈ Ψi and S ∪- p to χij for each 〈p,¬S〉 ∈ Ψi,
for every j = 1, . . . , ni (and the empty context in Mdl-atoms querying Σi, if it was only added
in the previous step). When computing the generated multi-context system, these extra input
information will yield new bridge rules in brψ(i,j) and in the context eventually added in the
first step; these are precisely the bridge rules added in step 4 of the construction of M(KB).
�

Thus, from an Mdl-program with observers we can obtain a multi-context system without
first having to “unfold” the observers into a simple Mdl-program.

6If there is an input context χi
j = ∅ in P, just take i∗ to be ψ(i, j).

17

5.3 Design patterns in multi-context systems

In real life, a substantial amount of the time required in software development is spent in
finding and implementing design solutions for recurrent problems already addressed and for
which good solutions already exist. For this reason, an important field in research is that
of identifying common scenarios and proposing mechanisms to deal with these scenarions –
the so-called design patterns for software development.

Within this setting, mappings between different formalisms are of the utmost usefulness,
since they allow design patterns that were originally conceived in one formalism to be auto-
matically ported to another formalism. The resulting design patterns can often be optimized
– but it is also common knowledge that optimizing a known solution is usually much simpler
than coming up with an efficient solution from scratch.

Several design patterns for Mdl-programs were proposed in [5], and we will present a few
of these and show how they can be translated to design patterns in MCSs. In most cases, this
will correspond to a more general degree of applicability, since the latter are a more general
framework. In a few cases, we will look at some trivial ways to optimize the resulting design
pattern.

One of the simplest design patterns is the Observer pattern, applicable when there is
a predicate in P that should include all instances of a concept or role S in some Σi (or
reciprocally). This pattern is implemented in an Mdl-program with observers simply by
adding the pair (S, p) (or (p, S)) to the appropriate observer set Λi (or Ψi). As discussed
above, this corresponds to adding a bridge rule p ← (i∗ : S) to br0 (or S ← (0 : p) to all
contexts generated from Σi).

This mechanism makes sense in a generic MCS, i.e. in one that is not generated from an
Mdl-program. Therefore, we immediately obtain a more general Observer design pattern
that we can apply in any multi-context system whenever we want to ensure that some Si in
context Ci is updated every time another Sj in context Cj is changed: simply add the rule
Si ← (j : Sj) to bri.

Note that this implementation is necessarily vague since there are no restrictions on the
logics underlying each context. Therefore, Si and Sj may be predicate symbols from a logic
program, or concepts or roles from a description logic, as in a multi-context system generated
from an Mdl-program, but they may also be propositional variables from a propositional
logic. Typically, however, the usage of the name “logic” suggests that they should be some
kind of predicate symbol; for simplicity, we will assume throughout that this is the case.

A more interesting example arises when one looks at the Polymorphic Entities design
pattern. The setting for this pattern is the following: in P , there is a predicate p whose
instances are inherited from other Q1, . . . , Qk where each Qj is a concept or role from Σϕ(j).
Again, in Mdl-programs this pattern is implemented by adding a number of observers, namely
(Qj, p) to each Λϕ(j). In the generated multi-context system, this corresponds to adding
bridge rules p← (ϕ(j)∗ : Qj) for each j to br0.

Once again, we can generalize this pattern to a generic MCS, whenever we want predicate
P from context Ci to inherit all instances of predicates Q1, . . . , Qk where each Qj is a
predicate from a context Cϕ(j). This is achieved by adding bridge rules P ← (ϕ(j) : Qj) for

18

each j to bri. Note that, even for an MCS generated from an Mdl-program, this is a more
general construction, since it also allows a concept or role from a description logic knowledge
base to be affected by concepts or roles in other knowledge bases or by predicates in P .

An example where we can simplify the design pattern we obtain is when we want to add
closed world semantics to a predicate in one of the contexts. In the setting of Mdl-programs,
where each description logic knowledge base has open-world semantics and the logic program
has default negation, this is achieved by the Closed World design pattern. To give closed-
world semantics to a concept (or role) S in Σi, we choose fresh predicate symbols s+ and s−

in P and add (S, s+) to Λi, (s−,¬S) to Ψi and the rule s−(X)← not s+(X) to P .
In the generated MCS, this corresponds to adding s+ ← (i∗ : S) to br0, ¬S ← (0 : s−)

to bri∗ , and the rule s−(X) ← not s+(X) to kb0. Generalizing this to an arbitrary MCS is
not immediate, however, since there is not necessarily a component where default negation
is available. On the other hand, default negation is an ingredient of bridge rules, so we can
forego the use of the auxiliary predicates s+ and s− and simply give closed-world semantics
to a predicate S in context Ci by adding the bridge rule ¬S ← not(i : S) to bri.

The last design pattern we discuss here is Adapter, which is applied whenever a compo-
nent Σk of a system is not known or available at the time of implementation of others, yet it
is necessary to query it. In an Mdl-program, one would add an empty interface knowledge
base ΣI whose language includes the desired concept and role names, and later connect each
concept and role in Σi with its counterpart in Σk by means of observers through P .

One can again simplify this pattern when in the setting of general MCSs, since it is
possible to connect each predicate from CI with the corresponding predicate (not necessarily
of the same name) from Ck by means of bridge rules in brI . Furthermore, this pattern does
not suffer from the limitations of the original Straight Adapter pattern in Mdl-programs,
since these limitations were strictly related to the existence of local queries, which are not
present in MCSs.

It is also interesting to notice that this last pattern can be modified in a very simple way
to implement a proxy: simply add side-conditions to the body of the bridge rules connecting
CI with Ck that restrict the communication between these two contexts.

6 Conclusions

The basic constructs of dl-programs and multi-context systems are based upon different mo-
tivations, and are therefore fundamentally different. In this paper, we showed how, even
so, an arbitrary dl-program can be translated into an MCS, which is equivalent to it in a
very precise way – namely, the interpretations of the dl-program naturally give rise to belief
states for the generated MCS, and this correspondence matches specific classes of semantic
structures. Thus, models become equilibria, minimal models become minimal equilibria, an-
swer sets become grounded equilibria, and well-founded semantics (for dl-programs) become
well-founded semantics (for MCSs).

An important aspect of this construction is that we can compute minimal equilibria
and well-founded semantics for MCSs generated from dl-programs, which is not true in

19

general (the definition of minimal equilibrium is a characterization that is not computational:
minimal equilibria cannot be constructed in a systematic way). Also, there is an algorithmic
procedure to check that an equilibrium for an MCS generated from a dl-program is grounded,
which again is not true in general.

Finally, we showed how this technique can be applied to generalize some useful construc-
tions on dl-programs to similar constructions in (general) MCSs.

References

[1] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications. 2nd
Edition. Cambridge University Press, 2007.

[2] G. Brewka and T. Eiter. Equilibria in heterogeneous nonmonotonic multi-context sys-
tems. In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence,
July 22-26, 2007, Vancouver, British Columbia, Canada, pages 385–390. AAAI Press,
2007.

[3] G. Brewka, T. Eiter, and M. Fink. Nonmonotonic multi-context systems: A flexible ap-
proach for integrating heterogeneous knowledge sources. In M. Balduccini and T.C. Son,
editors, Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning,
volume 6565 of Lecture Notes in Computer Science, pages 233–258. Springer–Verlag,
2011.

[4] L. Cruz-Filipe, P. Engrácia, G. Gaspar, and I. Nunes. Achieving tightness in dl-
programs. Technical Report 2012;03, Faculty of Sciences of the University of Lisbon,
July 2012. Available at http://hdl.handle.net/10455/6872.

[5] L. Cruz-Filipe, I. Nunes, and G. Gaspar. Patterns for programming in the semantic
web. Technical Report 2012;06, Faculty of Sciences of the University of Lisbon, October
2012. Available at http://www.di.fc.ul.pt/~in/papers/TR-2012-06.pdf.

[6] M. Dao-Tran, T. Eiter, and T. Krennwallner. Realizing default logic over Description
Logic Knowledge Bases. In C. Sossai and G. Chemello, editors, 10th European Con-
ference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (EC-
SQARU 2009), volume 5590 of Lecture Notes in Artificial Intelligence, pages 602–613.
Springer, July 2009.

[7] The dlvhex tool. http://www.kr.tuwien.ac.at/research/systems/dlvhex/.

[8] F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating Datalog and
description logics. Int. Inf. Systems, 1998.

20

[9] T. Eiter, G. Ianni, T. Lukasiewicz, and R. Schindlauer. Well-founded semantics for
description logic programs in the semantic Web. ACM Transactions on Computational
Logic, 12(2), 2011. Article 11.

[10] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer
set programming with description logics for the semantic web. Artificial Intelligence,
172(12–13):1495–1539, 2008.

[11] S. Heymans, T. Eiter, and G. Xiao. Tractable reasoning with DL-programs over Datalog-
rewritable description logics. In H. Coelho, R. Studer, and M. Wooldridge, editors,
Proceedings of 19th European Conference on Artificial Intelligence (ECAI), volume 215
of Frontiers in Artificial Intelligence and Applications, pages 35–40. IOS Press, 2010.

[12] B. Motik and R. Rosati. Reconciling description logics and rules. Journal of the ACM,
57, June 2010.

[13] R. Rosati. DL+log: Tight integration of description logics and disjunctive Datalog. In
P. Doherty, J. Mylopoulos, and C.A. Welty, editors, Tenth International Conference on
Principles of Knowledge Representation and Reasoning, pages 67–78. AAAI Press, June
2006.

21

