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Chapter 1

Introduction

Since the 1930’s, many models of computability have been widely studied;
some of them gave rise to diverse interesting and widely applicable topics in
Computer Science. In this work we briefly introduce a few of these models
and discuss their properties and some of their areas of application.

This work was motivated by the exercises proposed in [2]1; we start by
presenting the theoretical background on untyped λ-calculus and type theory
for these problems in Chapters 2 and 4 respectively, and present in Chapter 5
the resolution of some of those exercises as examples of the properties pre-
viously enunciated. Chapter 3 is a digression through combinatory algebras,
which are also related to λ-calculus, and introduces some original work in
the area.

λ-calculus2 was originally introduced in 1932 by Alonzo Church as a for-
mal theory to deal with the concept of functional abstraction. Here notions
of abstraction, application and substitution are formalized and freed of ambi-
guity.

Nowadays λ-calculus is a very wide subject of mathematics, with many
different applications; a major reference on the subject is [1].

In this work we will only study those aspects of λ-calculus that are essen-
tial for the comprehension of later chapters. We will introduce λ-calculus in
Chapter 2, presenting the general concepts and definitions motivated from
the viewpoint of someone who is constructing a model of computation and
stating some of its properties that will be useful further along.

Combinatory algebras and combinatory logic were introduced first by
Schönfinkel in 1924 and independently, and with a different formulation,
by Haskell Curry, in 1930. Until the late 1930’s they were studied many
important logicians (and mathematicians in general). Besides being useful

1The paper Problems in Type Theory by H. Barendregt.
2actually, untyped λ-calculus
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in the study of logic, they also provide an interesting model of computation
where variables are not needed.

Combinatory logic can be presented as an equational theory (as is done,
for example, in [1] and [5]) or as the study of a class of properties of combina-
tory algebras. The first approach, which is due to Curry, is usually followed
when focusing in the relationship with λ-calculus; the second one, which
we will follow, is more general and directed to the study of the properties
of combinatory algebras in themselves. When looked at from this point of
view, combinatory algebras become an intuitive and very powerful model of
computation which is more general than untyped λ-calculus.

In Chapter 3 we introduce combinatory algebras. We explore them in
some detail, proving in particular that they provide a model of computa-
tion in which every partial recursive function can be represented in some
way (which, by the Church thesis, implies that every effective procedure is
definable). In order to do this, we adapt the proof in [1] to the more gen-
eral framework of combinatory algebras, making use of many constructions
from [7] and [5]. In spite of this, our main result is not to be found among
the major works published in the subject.

We end this chapter relating combinatory algebras to λ-calculus; we show
that Λ is a combinatory algebra, hence inheriting all properties of these struc-
tures, and briefly debate the question of interpreting an arbitrary combina-
tory algebra in Λ.

In Chapter 4 we explain why untyped λ-calculus is not powerful enough
for some applications, and show how this limitations can be solved. Follow-
ing the same line of reasoning as in [3], we introduce the typed λ-calculus
systems λ → and λ2, due to Church, and examine some of the properties of
these systems. We then show how to generalize the ideas behind the construc-
tions of these systems to more abstract structures—Pure Type Systems—and
present properties of these systems that make them objects of theoretical in-
terest as well as the mathematical background for subjects such as automatic
proof-checking.

In Chapter 5 we present and comment several examples that illustrate
the good properties of these systems. These examples are taken from the
exercises proposed in [2], most of them also appearing (either as examples
or as proposed exercises) in [3]. In Section 5.2 we show how several logics
with their deductive systems can be coded in Pure Type Systems, and in
Section 5.3 we present a few examples of how we can, in a way that is similar
to what we did in combinatory algebras, represent computable functions.
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Chapter 2

Untyped λ-calculus

2.1 General Concepts

In this section, an introduction to λ-calculus will be given, containing the
basic definitions and results that will be needed throughout.

We begin by specifying the language with which we will be working.

Definition 2.1.1 An alphabet is a non-empty set. �

This definition is perfectly general; however, in the context of λ-calculus
we need to specify our alphabet in more detail.

Definition 2.1.2 The alphabet for the λ-calculus is composed by:

i. a denumerable sequence {vi}i∈N;

ii. the special symbol λ;

iii. punctuation marks ., (, );

The elements vi are called variables; we denote arbitrary variables by italic
lowercase letters: x, y, z, . . . �

We also allow some special symbols, apart from the variables, whose
meaning we might want to specify and use. These symbols will usually be
given as forming a set C, called the context.

Definition 2.1.3 The set of λ-terms over a context C, Λ(C) is defined
inductively as follows:

i. vi ∈ Λ(C), for all i ∈ N;

5



ii. C ⊆ Λ(C);

iii. if M,N ∈ Λ(C), then (MN) ∈ Λ(C);

iv. if M ∈ Λ(C), then (λvi.M) ∈ Λ(C).

We denote generic λ-terms by M,N, . . .. �

The operation defined on λ-terms that assigns to arbitrary M,N the
term (MN) is called application; the operation that assigns to an arbitrary
λ-term M and to an arbitrary variable x the term λx.M is called abstraction.
Intuitively, λ-terms represent functions which receive other λ-terms as argu-
ments; an abstraction term λx.M represents in some manner a function with
an argument x; an application term (MN) denotes the function M applied
to the argument N (hence the names). In the context of an application MN ,
the subterm M is sometimes referred to as the operator and the subterm N
as the argument.

Application is by convention associative to the left, which means that the
λ-term ((. . . ((M1M2)M3) . . .)Mn) is simply written down as M1M2 . . . Mn.
Likewise, the term (λx1.(λx2. . . . (λxk.M) . . .)) is usually written simply as
λx1 . . . xk.M or (taking −→x as the sequence x1 . . . xk) as λ−→x .M .

The outermost parenthesis in a λ-term are usually omitted.

When the context C is empty we denote the set of λ-terms over C simply
by Λ.

As is usual in logics, we need to define the free variables of a λ-term.

Definition 2.1.4 Let M be a λ-term. The set of free variables of M ,
FV (M), is defined inductively by

i. FV (x) = {x}, where x is an arbitrary variable;

ii. FV (c) = {}, if c ∈ C;

iii. FV (MN) = FV (M) ∪ FV (N);

iv. FV (λx.M) = FV (M) \ {x}.

An occurrence of a variable x in a λ-term M is called free if x ∈ FV (M)
and bound otherwise. A term in which all variable occurrences are bound is
called closed .

The set of all closed λ-terms is denoted by Λ0(C) (or simply by Λ0, if C
is empty). �
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Another important concept, also usual in logics, is the concept of substi-
tution. Intuitively, substituting the free variable x for the term L in M is
simultaneously replacing all free occurrences of x in M by L; however, care
must be taken that free variables in L do not become bound.

Definition 2.1.5 Let L,M be λ-terms and x an arbitrary variable. The
substitution of x for L in M , denoted by M [x := L], is defined inductively
by:

i. x[x := L] = L;

ii. M [x := L] = M , if x �∈ FV (M);

iii. (PQ)[x := L] = (P [x := L])(Q[x := L]);

iv. (λy.P )[x := L] = λy.P [x := L], if x ∈ FV (λy.P )1 and y �∈ FV (L);

v. (λy.P )[x := L] = λz.(P [y := z])[x := L], if x ∈ FV (λy.P ), y ∈ FV (L)
and z is a fresh variable not occurring (free or bound) in L or P 2. �

We will omit parenthesis whenever it is clear from the context to which
term a substitution is being applied. For instance, in the last item of
the last definition we will usually write λz.P [y := z][x := L] instead of
λz.(P [y := z])[x := L]. The operation of substitution is supposed to have
higher priority than term-forming operations, so that we will not omit paren-
thesis in (λz.P [y := z])[x := L], for example.

The following result, which comes in handy whenever we are dealing with
substitution, is easily proved by structural induction:

Lemma 2.1.6 Let L,M,N be λ-terms and x, y be variables. Then M [x :=
L][y := N ] ≡ M [y := N [x := L]][x := L]. �

2.2 Reduction

In classical λ-calculus terms are related by different notions of reduction.
Intuitively, for a given reduction R, when we say that a term M R-reduces
to N we mean that when we perform a computation starting with M we
eventually get to N . According to the intended meaning of “computation”
we can specify different notions of reduction.

1and therefore x and y are different variables
2we can make this more precise by requiring z to be the variable vi with the least i

such that vi does not occur in P and L
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Definition 2.2.1 A binary relation on Λ(C) is called a notion of reduction.
�

However, it turns out almost immediately that this definition is too gen-
eral to be interesting; the following concept applies to binary relations pos-
sessing some useful properties.

Definition 2.2.2 A notion of reduction → is called a reduction schema iff
it satisfies the following rules, presented here in natural deduction style:

M → N
ML → NL

(right congruence)

M → N
LM → LN

(left congruence)

M → N
λx.M → λx.N

(abstraction)

�

Definition 2.2.1 turns out to be useful, however, as it is very simple to
generate reduction schemata from arbitrary notions of reduction.

Proposition 2.2.3 Let R be a notion of reduction. Then R induces the
following reduction schemata:

• the one-step R-reduction, →R, is defined inductively by:

1. R ⊆→R;

2. if M →R N and L ∈ Λ(C), then LM →R LN ;

3. if M →R N and L ∈ Λ(C), then ML →R NL;

4. if M →R N and x is a variable, then λx.M →R λx.N .

• the R-reduction, →∗
R, is defined inductively by:

1. →R⊆→∗
R;

2. if M ∈ Λ(C), then M →∗
R M ;

3. if M →∗
R N and N →∗

R L, then M →∗
R L.

• the R-equality, =R, is defined inductively by:

1. →∗
R⊆=R;

2. if M =R N , then N =R M ;
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3. if M =R N and N =R L, then M =R L.

It is easy to see that these relations are indeed reduction schemata. �

Notice that these reduction schemata can be concisely described as fol-
lows: →R is the smallest reduction schema containing R; →∗

R is the reflexive
and transitive closure of →R; =R is the equivalence relation induced by →∗

R.
We also have the following result, which is easy to prove by structural

induction:

Lemma 2.2.4 Let M ,M ′,N be λ-terms, x a variable and R a notion of re-
duction such that M →R M ′. Then M [x := N ] →∗

R M ′[x := N ]. �

Three reduction schemata are specially important in classical λ-calculus.

Definition 2.2.5

1. the notion of reduction α is defined by α = {〈λx.M, λy.M [x := y]〉};

2. the notion of reduction β is defined by β = {〈(λx.M)N,M [x := N ]〉};

3. the notion of reduction η is defined by η = {〈λx.Mx,M〉}. �

These notions of reduction induce three very important reduction sche-
mata known as, respectively, α-equivalence, β-reduction and η-reduction.

α-equivalence (=α), usually denoted simply by ≡, is a syntactical notion
useful to identify λ-terms which are, in practice, indistinguishable. It is
sometimes given as a syntactical rule in the formation of terms; we prefer
to present it as a reduction schema, but from now on we will identify α-
equivalent terms. This convention, which is almost universally adopted, is
useful for instance in defining substitution: when specifying the meaning
of (λy.P )[x := L] we can assume that x and y denote different variables,
eventually replacing λy.P with an α-equivalent term.

β-reduction is the most widely used notion of reduction; we can say it
represents the default method of computation in λ-calculus, and expresses
the intuitive meaning of an application: the term (λx.P )Q is interpreted as
the operator λx.P applied to the argument Q. Intuitively, this should be the
result of substituting the variable x in P by Q—giving precisely P [x := Q].

β-reduction is also extremely important in typed λ-calculus, and we will
be studying some of its properties in this section.

η-reduction is included here for aesthetic reasons, as it is also quite central
to classical λ-calculus. We will not, however, dwell on it in what follows.
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2.3 Properties of reduction

We will now proceed to define some interesting properties that reduction
schemata can have, and analyze the consequences of those properties.

From now on, we will use the term reduction whenever it is not relevant
whether we are talking about reduction schemata or notions of reduction.

Definition 2.3.1 Let R be a reduction. An R-redex is a term M such that
M →R N , for some λ-term N . �

Definition 2.3.2 A λ-term M is said to be in R-normal form iff whenever
M →R N , then M = N . An R-normal form N is said to be an R-normal
form of M iff M =R N . �

Intuitively, a term is in normal form if no more computation may be
performed on it. Accordingly, if a term M has N as R-normal form, we
refer to N as the result of the computation of M ; however, in general, it is
not the case that this N is unique. Nevertheless, uniqueness of the normal
form comes in many interesting cases as a consequence of a stronger (and
important in itself) property.

Definition 2.3.3 Let → be a notion of reduction. We say that → satisfies
the diamond property, denoted by R |= ♦, iff for all λ-terms M,P,Q, if
M → P and M → Q then there exists a λ-term N such that P → N and
Q → N . �

We can picture this property as a diagram:

M

����
��
��
��

���
��

��
��

�

P

���
�

�
�

Q

���
�
�
�

N

The meaning of this property is the following: if → has the diamond
property, then there can not exist two diverging reduction sequences starting
from the same term.

In general, this property is too strong to ask of a notion of reduction;
however, it is useful to single out the notions of reduction that give birth to
reduction schemata satisfying the diamond property.
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Definition 2.3.4 A notion of reduction R is said to be Church-Rosser (or
simply CR) iff →∗

R satisfies the diamond property. �

The following results are direct consequences of this definition:

Proposition 2.3.5 Let R be a CR reduction. Then:

1. if N is an R-normal form of M , then M →∗
R N .

2. any term can have at most one normal form. �

Thus, CR reductions are the ones that correspond to our intended mean-
ing of “computation”—namely, any computation starting with one term can
have at most one output.

The most important result for our work is the following:

Theorem 2.3.6 β-reduction is Church-Rosser. �

Another reduction that is usually studied is βη-reduction, which is the
reduction induced by the reunion of the reduction schemata β and η. The
following result also holds:

Theorem 2.3.7 βη-reduction is Church-Rosser. �

Proof of these results can be found in Chapters 3 and 11 of [1].
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Chapter 3

Combinatory Algebras

3.1 General Notions

Combinatory algebras were first introduced as a model of computation. Later
on, they were shown to be strongly related to untyped λ-calculus, providing
a semantics for that theory. This relationship allows us to translate some
results in either theory to the other.

In this chapter we will study some of these properties proving them within
the theory of combinatory algebras; although they were originally proved for
λ-calculus, we will adapt the proofs in [1] and show that they are valid in
a more general frame. In the end we will relate combinatory algebras to
untyped λ-calculus.

Definition 3.1.1 A combinatory algebra is a quadruple 〈D, ·,K,S〉 satis-
fying:

i. D is a set;

ii. · : D ×D → D is a binary operation;

iii. K,S ∈ D are such that

K �= S

(K) (K · x) · y = x, for all x, y ∈ D
(S) ((S · x) · y) · z = (x · z) · (y · z) for all x, y, z ∈ D

The elements of D are called combinators. �

In other words, a combinatory algebra is an algebraic structure 〈D, ·〉 with
two distinguished elements K and S satisfying (K) and (S) as above. We will
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often refer to the combinatory algebra 〈D, ·,K,S〉 simply as D, and we will
use bold typeface for generic elements of the algebra. Also, we will usually
omit the symbol for the operation in the algebra (·), writing AB instead of
A · B. As before, we will assume left associativity.

The reason for the choice of S and K lies in the following property
of combinatory algebras: any term t(x1, . . . , xn) with free variables among
x1, . . . , xn can be represented in a combinatory algebra D in the sense that
there exists an element T ∈ D such that Tx1 . . . xn = t(x1, . . . , xn). We will
make this notion more precise in the following.

Definition 3.1.2 Let {x1, . . . , xn} be a finite set of variables. The set of
terms over {x1, . . . , xn} is inductively defined as follows:

i. xi is a term over {x1, . . . , xn}, for every 1 ≤ i ≤ n;

ii. A is a term over {x1, . . . , xn}, for every A ∈ D;

iii. if t1 and t2 are terms over {x1, . . . , xn}, then so is (t1t2). �

Generic terms over {x1, . . . , xn} are denoted as t(x1, . . . , xn); a term is an
expression that is a term over some finite set of variables {x1, . . . , xn}. We will
write simply t instead of t(x1, . . . , xn) when the underlying set {x1, . . . , xn}
is irrelevant.

Definition 3.1.3 An algebraic structure 〈D, ·〉 is combinatory complete iff
for every term t(x1, . . . , xn) over {x1, . . . , xn} there is an element T ∈ D
such that, for all A1, . . . ,An ∈ D, TA1 . . .An = t(A1, . . . ,An), where
t(A1, . . . ,An) is the result of uniformly substituting each xi by the constant
Ai in t(x1, . . . , xn).

The element T is said to represent the term t. �

We will now proceed towards a result that justifies our definition of com-
binatory algebra. Before we do this, however, we need an auxiliary result
which is interesting in itself, as it offers some insight into our choice of K
and S.

Lemma 3.1.4 Let 〈D, ·,K,S〉 be a combinatory algebra and n ∈ N \ {0}. If
t(x1, . . . , xn) is a term over {x1, . . . , xn}, then there is a term t′(x1, . . . , xn−1)
over {x1, . . . , xn−1} such that:

i. the only constants occurring in t′ are K, S and the constants that already
occur in t;

ii. t′(x1, . . . , xn−1) · xn = t(x1, . . . , xn).
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Proof. We will proceed by induction on the structure of the term t.

• t is xi, where i �= n: then we can take t′ to be Kt:

Ktxn = t

in virtue of (K).

• t is a constant: again, we can take t′ to be Kt:

Ktxn = t

in virtue of (K).

• t is xn: then we can take t′ to be SKK:

SKKxn = Kxn(Kxn)

= xn

according to both (S) and (K).

• t is (t1t2): by induction hypothesis there exist terms t′1 and t′2 over
{x1, . . . , xn−1} such that t′1xn = t1 and t′2xn = t2. Define t′ = St′1t

′
2.

Then:

– by construction, t′ is a term over {x1, . . . , xn−1};
– due to our choice of t′1 and t′2, we have that

t′xn = St′1t
′
2xn

= t′1xn(t′2xn)

= t1t2

= t

As in this construction the only constants introduced are K and S, this ends
the proof of our lemma. �

The main result is the following:

Theorem 3.1.5 (Schönfinkel) Let 〈D, ·〉 be an algebraic structure. Then
〈D, ·〉 is combinatory complete iff there are elements K,S ∈ D such that

Kxy = x, for all x, y ∈ D
Sxyz = xz(yz), for all x, y, z ∈ D

In other words, 〈D, ·〉 is combinatory complete iff there are elements K,S ∈ D
such that 〈D, ·,K,S〉 is a combinatory algebra.

15



Proof. We prove this result by induction on the number of variables in t1.
Suppose t has no variables; then it can only be constructed from the

elements of D using the operation of the algebra. Therefore t itself is an
element of the algebra, and represents itself.

Suppose that t is a term over {x1, . . . , xn}. By Lemma 3.1.4 there is a term
t′ over {x1, . . . , xn−1} such that t′ ·xn = t and the only constants occurring in
t′ that do not already occur in t are K and S, which are also elements of D.
By induction hypothesis there is an element T ∈ D that represents t′; but
then TA1 . . .An = t′(A1, . . . ,An−1)An, which by definition of t′ is simply
t; therefore T also represents t.

Reciprocally, if D is combinatory complete, then there are elements K
and S in D satisfying respectively (K) and (S), as x1x2 and x1x3(x2x3) are,
respectively, terms over {x1, x2} and over {x1, x2, x3}. �

Next, we will define two important binary relations between closed terms
over combinatory algebras.

Definition 3.1.6 The contraction in a combinatory algebra 〈D, ·,S,K〉, is
the binary relation � inductively defined by:

(Axiom) T � T, for T ∈ D;
(K) Kt1t2 � t1, for all terms t1 and t2;
(S) St1t2t3 � t1t3(t2t3), for all terms t1, t2 and t3;

(Congruence) If t1 � t′1 and t2 � t′2, then t1t2 � t′1t
′
2.

The reflexive and transitive closure of � is called weak reduction and
denoted by →w. �

Weak reduction is the most natural and the most important reduction
in the context of combinatory algebras; as such, we will sometimes omit the
adjective “weak” and write simply → whenever there is no risk of confusion.

Also, we will sometimes write t
�=→ t′ when we want to point out that t → t′

and t and t′ are not identical.
Although we can define weak reduction directly, we follow here the ap-

proach of Engeler (see [5]) and introduce contraction. This will make it easier
to prove properties about weak reduction, as we will be able to work with
sequences of contractions which are simpler to manipulate.

A term over a combinatory algebra is said to be in normal form whenever
it is in w-normal form (recall Definition 2.3.2); similarly we say that a term
has a normal form, etc..

1that is, the smallest n such that t is a term over {x1, . . . , xn}.
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Weak reduction will later on be related to β-reduction in λ-calculus. At
this stage, we will just state without proof the following result:

Proposition 3.1.7 Weak reduction has the diamond property. �

The proof of this result can be found in [5].

3.2 Other Properties of Weak Reduction

Besides combinatory completeness, combinatory algebras enjoy lots of other
interesting properties. In the following sections we will present a few of them;
our aim will be proving that combinatory algebras provide a computational
model in which all of Kleene’s partial recursive functions are representable
in a sense which we will define.

We will begin by proving some properties of weak reduction, and relate
them to important properties of combinatory algebras.

Definition 3.2.1 Let t, t′ be terms over a combinatory algebra such that
t � t′. We say that t contracts to t′ by contraction on the leftmost redex,
which we denote by t©� t′, iff:

i. t is Kt1t2 and t′ is t1;

ii. t is St1t2t3 and t′ is t1t3(t2t3);

iii. t is t1t2, t1©� t′1, t2 � t′2 and t′ is t′1t
′
2.

We will write t ⇒ t′ iff t → t′ and one of the contractions in the contraction
sequence from t to t′ is made on the leftmost redex2; the relation ⇒ is also
called leftmost (weak) reduction.

Also, when there is need, we will write t �©� t′ to signify that t � t′ but it
is not the case that t©� t′. �

Notice that contraction on the leftmost redex is persistent: if a term t is
contracted, then either the leftmost redex is contracted or it can still be in
the resulting term (even though some of its subterms may have changed).

We recall that a term t is in normal form iff whenever t → t′, then t′ is t.
Also, we say that t has t′ as normal form iff t → t′ and t′ is in normal form.
The following characterizations will also be useful:

Lemma 3.2.2 If a term t has a normal form t′, then there is a sequence
t0, . . . , tn such that:

2In particular, notice that if t ⇒ t′ then t
�=→ t′.
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i. t0 is t;

ii. ti©� ti+1, for 0 ≤ i < n;

iii. tn is t′.

Proof. Suppose t has t′ as a normal form. Then there is a sequence t0, . . . , tn
such that t0 is t, tn is t′ and ti � ti+1.

Our strategy will be the following: in each step we will change the first
contraction that is not on the leftmost redex, and show that we can still get
from t0 to tn in n or less steps. Therefore, we can get to tn by only making
leftmost contractions.

Suppose that t0 �©� t1, and let t be the subterm containing the leftmost
redex in t0.

We then know that t0 is of the form t∗tt10 . . . tk0, where k ≥ 03 and t∗ does
not contract.

There are several cases to consider:

• t is Kv0x0: then t0 is t∗(Kv0x0)t
1
0 . . . tk0. As contraction can not make

different subterms interact, somewhere in the sequence t0, . . . , tn there
is a term ti such that:

– tj is t∗(Kvjxj)t
1
j . . . tkj , for 1 ≤ j ≤ i;

– vj−1 � vj, xj−1 � xj and tmj−1 � tmj , for 1 ≤ j ≤ i and 1 ≤ m ≤ k;

– ti+1 is t∗vit
1
i+1 . . . tki+1.

If we now define t′j as t∗vj−1t
1
j . . . tkj , for 1 ≤ j ≤ i, and t′j as tj for

i < j ≤ n, we obtain a sequence of n contractions from t0 to tn where
the first contraction is on the leftmost subterm.

• t is Kv0x0w
1
0 . . . wm

0 : analogous.

• t is Sv0x0z0: then take t0 is t∗(Sv0x0z0)t
1
0 . . . tk0. Again, as contraction

can not make different subterms interact, somewhere in the sequence
t0, . . . , tn there is a term ti such that:

– tj is t∗(Svjxjzj)t
1
j . . . tkj , for 1 ≤ j ≤ i;

– vj−1 � vj, xj−1 � xj, zj−1 � zj and tmj−1 � tmj , for 1 ≤ j ≤ i and
1 ≤ m ≤ k;

– ti+1 is t∗(vizi(xizi))t
1
i+1 . . . tki+1.

3If k = 0, then t0 is simply t∗t.
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Once more, define t′j as t∗(vj−1zj−1(xj−1zj−1))t
1
j . . . tkj , for 1 ≤ j ≤ i,

and t′j as tj, for i < j ≤ n. We thus obtain a sequence of n contractions
from t0 to tn where the first contraction is on the leftmost subterm.

• t is Sv0x0z0w
1
0 . . . wk

0 : analogous.

We can now consider the reduction sequence t′0, . . . , t
′
n. By iteratively

choosing the least i such that t′i �©� t′i+1 and repeating the above process we
eventually get a sequence of leftmost contractions from t0 to tn. �

The following result is somewhat more general:

Proposition 3.2.3 If a term t has a normal form, then there can be no
infinite sequence t0, . . . , tn, . . . such that:

i. t0 is t;

ii. ti � ti+1, for every i ∈ N;

iii. an infinite number of contractions are made on the leftmost term.

Proof. Suppose that t has t′ as a normal form; then there is a sequence
t0, . . . , tn such that t0 is t, ti � ti+1 for 0 ≤ t < n and tn is t′. By the previous
lemma we can suppose without loss of generality that ti©� ti+1.

Suppose that t′0, . . . , t
′
k, . . . is an infinite sequence such that, for every

i ∈ N, t′i � t′i+1, where t′0 is t, and that in this sequence an infinite number
of reductions are made in the leftmost redex.

We claim that for every 0 ≤ i ≤ n there is some ki such that ti → t′ki
. We

reason as follows: let k1 be the first natural number satisfying t′k1−1
©� t′k1

;
then t1 → t′k1

. We show this by cases4:

• the leftmost redex in t0 is Ku1u2: then, as in the previous proof, t0
is t∗(Ku1u2)t

1 . . . tk; also, t′k1−1 is t∗(Ku′
1u

′
2)v

1 . . . vk, where u1 → u′
1,

u2 → u′
2 and ti → vi, and t′k1

is t∗u′
1v

1 . . . vk. Also t1 is t∗u1t
1 . . . tk, and

as → is a congruence we have t1 → t′k1
.

• the leftmost redex in t0 is Ku1u2 . . . uk: analogous.

• the leftmost redex in t0 is Su1u2u3: then t0 is t∗(Su1u2u3)t
1 . . . tk,

whence t′k1−1 is t∗(Su′
1u

′
2u

′
3)v

1 . . . vk with u1 → u′
1, u2 → u′

2, u3 →
u′

3 and ti → vi, and t′k1
is t∗(u′

1u
′
3(u

′
2u

′
3))v

1 . . . vk. Also t1 must be
t∗(u1u3(u2u3))t

1 . . . tk, and as → is a congruence relation we can con-
clude that t1 → t′k1

.

4In all cases, the relevant step is that contractions cannot make different subterms of
a redex either interact or disappear.
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• the leftmost redex in t0 is Su1u2u3 . . . uk: analogous.

We can now consider the following two sequences of contractions starting
from t1: the sequence t1, . . . , tn, where all contractions are made on the
leftmost subterm, and the sequence t1, . . . , t

′
k1

, t′k1+1, . . . where we contract
from t1 to t′k1

and proceed as in the original sequence t′0, . . . , t
′
n, . . ..

In the second sequence, an infinite number of contractions are made on
the leftmost subterm; reasoning as before, there is a term t∗ in that sequence
such that t2 → t∗. There are two cases to consider:

i. t∗ occurs in the sequence between t1 and t′k1
: then we can take k2 to be

k1, and we have t2 → t′k2
;

ii. t∗ occurs after t′k1
; then t∗ is in the original sequence, therefore it is t′k2

for some k2 ≥ k1.

Proceeding inductively, we can find numbers k1, . . . , kn such that ti → tki

for 1 ≤ i ≤ n. In particular, there is some natural number kn such that
tn → t′kn

; but tn is t′, and as such in normal form; hence t′kn
cannot contract

any further. This contradicts out original supposition that t′0, . . . , t
′
k, . . . is

an infinite sequence of contractions where an infinite number of contractions
is made on the leftmost redex, as all leftmost contractions must be made in
the first kn steps. Therefore this sequence cannot exist.

Hence, if t has a normal form, then in every sequence of contractions
starting from t there is only a finite number of leftmost contractions. �

The following result is just a rephrasing of the last proposition:

Theorem 3.2.4 Let t be a term. If there is an infinite sequence t0, . . . , tn, . . .
such that

i. t0 is t;

ii. ti ⇒ ti+1

then t has no normal form. �

We will now proceed to strengthen Schönfinkel’s Theorem as follows:

Theorem 3.2.5 If 〈D, ·,K,S〉 is a combinatory algebra, then every term t
over {x1, . . . , xn}, with n > 0, can be represented by an element T ∈ D such
that, for every A1, . . . ,An ∈ D, TA1 . . .An ⇒ t(A1, . . . ,An).
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Proof. In order to prove this result, we will have to look at the original proof
of Lemma 3.1.4, which we needed for our inductive proof of Theorem 3.1.5.

We start by proving that, if t(x1, . . . , xn) is a term over {x1, . . . , xn}, then
there is a term t′(x1, . . . , xn−1) over {x1, . . . , xn−1} such that t′(x1, . . . , xn−1) ·
xn ⇒ t(x1, . . . , xn). We show that we can take t′ as before:

• t is T ∈ D (eventually K or S) or xi, with i �= n: then t′ is Kt and

Ktxn©� t.

• t is xn: then t′ is SKK, and

SKKxn ©� Kxn(Kxn)

©� xn

• t is t1t2: then by induction hypothesis there are terms t′1 and t′2 over
{x1, . . . , xn−1} such that t′i(x1, . . . , xn−1) · xn ⇒ ti(x1, . . . , xn), where
i = 1, 2. Again we take t′ as St′1t

′
2:

St′1t
′
2xn ©� t′1xn(t′2xn)

⇒ t1(t
′
2xn)

→ t1t2

Notice that none of the contractions in the last reduction is in the
leftmost redex; however, we still have t′xn ⇒ t, as intended.

That proves the generalization of Lemma 3.1.4; to prove our result, we pro-
ceed as before: from t(x1, . . . , xn) we construct a term t1(x1, . . . , xn−1) as
above; from this we obtain t2(x1, . . . , xn−2), until we find a term tn = T with
no variables. By construction, we have, for every A1, . . . ,An ∈ D:

TA1 . . .An ⇒ tn−1(A1)A2 . . .An

⇒ . . .

⇒ t1(A1, . . . ,An−1)An

⇒ t(A1, . . . ,An)

from which we can conclude that not only T represents t, but also that for
every A1, . . . ,An ∈ D we have TA1 . . .An ⇒ t(A1, . . . ,An). �

This theorem will be useful when we want to define a term representing a
partial recursive function. Using it together with Proposition 3.2.4, we will be
able to prove that whenever the original function applied to some arguments
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is undefined, the term that represents it applied to some representation of its
arguments will not have a normal form—we will be able to find an infinite
sequence of contractions where an infinite number of them are made on the
leftmost term.

Before we can start representing functions, we still need another result.

Definition 3.2.6 Let 〈D, ·,K,S〉 be a combinatory algebra. A combinatory
equation in D is an expression of the form Tx2 . . . xn = t(T, x2, . . . , xn), where
t(x1, . . . , xn) is a term over {x1, . . . , xn}. �

Proposition 3.2.7 Every combinatory equation in a combinatory algebra
has a solution; that is, if Tx2 . . . xn = t(T, x2, . . . , xn) is a combinatory equa-
tion, then there is an element T ∈ D such that, for every A2, . . . ,An ∈ D,

TA2 . . .An = t(T,A2, . . . ,An).

Furthermore, TA2 . . .An ⇒ t(T,A2, . . . ,An).

Proof. Let Tx1 . . . xn = t(T, x2, . . . , xn) be a combinatory equation, and
define t′(x1, . . . , xn) as t(x1x1, . . . , xn). By Theorem 3.2.5 there is an element
T′ ∈ D such that

T′A1 . . .An ⇒ t′(A1, . . . ,An).

Take T as T′T′. Then we have:

TA2 . . .An = T′T′A2 . . .An

⇒ t′(T′,A2, . . . ,An)

= t(T′T′,A2, . . . ,An)

= t(T,A2, . . . ,An)

as intended. �

3.3 Definability and Computability

We will now proceed to prove computational completeness of combinatory
algebras. We first introduce some auxiliary notions, namely a representation
of natural numbers, and analyse some of their properties5.

The results presented herein are closely related to those in Chapter 8
of [1]; however, as we are working within a combinatory algebra, many of

5This representation is not the same one we will be using when we work in type theory;
however, it is a convenient one to use in combinatory algebras.
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the proofs have to be adapted to our case. Most of the hard work, however,
was already done in the previous section, where we showed some results for
which, although there are equivalent results in λ-calculus, the corresponding
proof can not be readily adapted.

Throughout this section, we will assume we are working in a combinatory
algebra 〈D, ·,K,S〉. To simplify notation, we begin by naming some elements
in D.

Definition 3.3.1 According to Theorem 3.2.5, the following elements of D
exist:

• I such that Ix ⇒ x; in particular, we will take I
def
= SKK;

• T such that Txy ⇒ yx;

• V such that Vxyz ⇒ zxy.

The names for these combinators are traditional and of standard use in com-
binatory algebras. �

Definition 3.3.2 The numerals in D are inductively defined as follows:

• �0� is I;

• �n + 1� is V(KI)�n�. �
This definition of numerals is given in [7]; it is a trivial adaptation to

combinatory algebras of the numeral system due to Barendregt and used
in [1].6

The following result is easily proved by induction.

Proposition 3.3.3 For every n,m ∈ N, �n� = �m� iff n = m. �
At this point, it should be quite obvious what the meaning of “the term

F represents the function f : N
k → N” should be whenever f is defined: if

f(n1, . . . , nk) is defined, we would like to have

F�n1� . . . �nk� = �f(n1, . . . , nk)�.

However, at this point it is not clear what F�n1� . . . �nk� should be when-
ever it is the case that f(n1, . . . , nk) is undefined. One possibility would be
simply to ask for F�n1� . . . �nk� not to be a numeral; unfortunately, everything
does not work out too well in this case. We need another auxiliary definition
before we can say what F�n1� . . . �nk� should be in this case.

6The numeral system we choose has no influence in the validity in general of the prop-
erties we will prove; as is shown in [1], they are immediately translatable into analogous
properties for any numeral system with reasonable characteristics.
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Definition 3.3.4 An element T is said to be solvable iff there are k ∈ N

and elements N1, . . . ,Nk ∈ D such that TN1 . . .Nk = I. �

Notice that, as I is in normal form, if T is solvable then there are k ∈ N

and N1, . . . ,Nk ∈ D such that TN1 . . .Nk → I.
The following are direct consequences of the definition:

Proposition 3.3.5 If, for all k ∈ N and N1, . . . ,Nk, the term TN1 . . .Nk

does not have a normal form, then T is not solvable.

Proof. Suppose T is solvable; then we can find k ∈ N and elements
N1, . . . ,Nk ∈ D such that TN1 . . .Nk → I; in particular, TN1 . . .Nk has a
normal form (namely, I). �

Proposition 3.3.6 If T is not solvable, then for every k ∈ N and for every
N1, . . . ,Nk ∈ D the element TN1 . . .Nk is not solvable. �

A not-so-trivial result is the following:

Proposition 3.3.7 Let T and T′ be such that T → T′. If T′ is not solvable,
then neither is T.

Proof. Suppose that T → T′ and T is solvable. Then there are k ∈ N and
combinators N1, . . . ,Nk ∈ D such that

TN1 . . .Nk → I.

By hypothesis, as T → T′, we also know that

TN1 . . .Nk → T′N1 . . .Nk

and, as →|= ♦ and I is in normal form, we immediately conclude that
T′N1 . . .Nk → I. Hence T′ is solvable.

Therefore, if T → T′ and T′ is not solvable, then neither is T. �

We will now relate the concept of solvability with the concept of numeral
in order to get a suitable way of representing the notion of “undefined”.

Proposition 3.3.8 Let �n� be a numeral. Then �n� is solvable; furthermore,
�n�KII ⇒ I.

Proof. We will consider two cases:
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i. n = 0: then �n� is I and we have

IKII ⇒ KII

⇒ I

ii. n �= 0: then there is an m such that �n� is �m + 1� = V(KI)�m� and we
have

V(KI)�m�KII ⇒ K(KI)�m�II
⇒ KIII

⇒ II

⇒ I

which ends our proof. �

This result motivates the following definition:

Definition 3.3.9 Let k ∈ N \ {0} and f : N
k �→ N be a partial function.

The combinator F is said to represent f iff the following two conditions are
satisfied:

i. if f(n1, . . . , nk) ↓, then F�n1� . . . �nk� → �f(n1, . . . , nk)�;

ii. if f(n1, . . . , nk) ↑, then F�n1� . . . �nk� is not solvable. �
Notice that solvability is not decidable: if a term T is solvable by terms

A1, . . . ,Ak ∈ D then we can check this fact, but in general there is no
effective way of deciding whether or not a given term is solvable and, in the
affirmative case, who A1, . . . ,Ak should be. However, as we already proved
that numerals are solvable in an uniform way, this will not be a problem for
our future work.

Lemma 3.3.10 If F is a combinator representing the partial function f :
N

k �→ N, where k ∈ N \ {0}, then:

i. if f(n1, . . . , nk) ↓, then F�n1� . . . �nk�KII ⇒ I;

ii. if f(n1, . . . , nk) ↑, then F�n1� . . . �nk�KII is not solvable.

Proof. Suppose f(n1, . . . , nk) is defined. Then, as F represents f , we know
that F�n1� . . . �nk� is a numeral, hence solvable by KII. By Proposition 3.3.8
we have:

F�n1� . . . �nk�KII → �f(n1, . . . , nk)�KII

⇒ I
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Suppose f(n1, . . . , nk) is undefined. Then, by hypothesis, F�n1� . . . �nk� is not
solvable; by Lemma 3.3.6, neither is F�n1� . . . �nk�KII. �

We will now go on to prove computational completeness.
As is usual when working with partial functions, we use ⊥ to repre-

sent “undefined”, f(n1, . . . , nk) ↑ to mean “f(n1, . . . , nk) is undefined” and
f(n1, . . . , nk) ↓ to mean “f(n1, . . . , nk) is defined”. The notation f : N

k �→ N

should be read “f is a partial function from N
k into N”, that is, there may

be some n1, . . . , nk ∈ N such that f(n1, . . . , nk) ↑.
We start by defining the class of partial recursive functions:

Definition 3.3.11 The class PR of partial recursive functions is the class
inductively defined by:7

i. the function 0 : N → N such that, for all n ∈ N, 0(n) = 0 (the zero
function) is in PR;

ii. the function Suc : N → N such that, for all n ∈ N, Suc(n) = n + 1 (the
successor function) is in PR;

iii. for every k ∈ N \ {0} and 1 ≤ i ≤ k, the function Uk
i : N

k → N such
that, for all n1, . . . , nk ∈ N, Uk

i (n1, . . . , nk) = ni (the projection function
with parameters n and i) is in PR;

iv. for every k ∈ N \ {0}, if gi : N
k �→ N ∈ PR for i ∈ {1, . . . ,m} and

h : N
m �→ N ∈ PR then so is the function f : N

k �→ N defined by
composition from g1, . . . , gm and h such that, for all n1, . . . , nk ∈ N,

f(n1, . . . , nk) = h(g1(n1, . . . , nk), . . . , gm(n1, . . . , nk)),

being undefined whenever any of the evaluations in the righthandside of
the above expressions are undefined;

v. for every k ∈ N \ {0}, if g : N
k �→ N ∈ PR and h : N

k+2 �→ N ∈ PR,
then so is the function f : N

k+1 �→ N defined by primitive recursion from
g and h such that, for all n1, . . . , nk+1 ∈ N,

f(n1, . . . , nk, 0) = g(n1, . . . , nk)

f(n1, . . . , nk,m + 1) = h(n1, . . . , nk,m, f(n1, . . . , nk,m))

being undefined whenever any of the evaluations in the righthandside of
the above expressions are undefined;

7There are several common definitions of the class PR in current use. We use the one
in [6] (Definition II.1.1); however, the results we will prove are independent of the precise
definition used, as is discussed in that same reference.
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vi. for every k ∈ N \ {0}, if g : N
k+1 �→ N ∈ PR, then so is the function f :

N
k �→ N defined by minimalization from g such that, for all n1, . . . , nk ∈

N,

f(n1, . . . , nk) =




m∗ if
g(n1, . . . , nk,m) ↓ for all m < m∗

g(n1, . . . , nk,m) �= 0 for all m < m∗

g(n1, . . . , nk,m
∗) = 0

⊥ otherwise

�

By saying that a combinatory algebra D is computationally complete, we
mean that every partial recursive function is represented by some element of
D. In order to prove that every combinatory algebra has this property, we
will appeal to a result due to Kleene, the proof of which can be found in [6].

Proposition 3.3.12 Let f ∈ PR. Then f can be obtained from total
functions in PR by applying only composition and minimalization.8 �

This will allow us to consider only functions defined by primitive recursion
from total functions.

Proposition 3.3.13 The basic functions (Zero, Successor and Projections)
are all representable in D.

Proof. For each of these functions we will define a combinator that rep-
resents it. Notice that all of them are total functions (that is, everywhere
defined), so we have only to verify condition (i) of Definition 3.3.9.

• Zero: the combinator K�0� trivially represents the basic function Zero:

K�0��n� = �0� = �Zero(n)�

• Successor: the combinator σ
def
= V(KI) represents the successor func-

tion:

σ�n� = V(KI)�n�
= �n + 1�
= �Suc(n)�

and, as → is reflexive, σ�n� → �n + 1�.

8This is Theorem II.1.2 of [6], stated in a slightly different form.
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• Projections: let f : N
k → N be such that f(n1, . . . , nk) = ni, with

k ∈ N \ {0} and 1 ≤ i ≤ k. By Theorem 3.2.5, as xi is a term over
{x1, . . . , xk}, there is a combinator F such that FA1 . . .Ak ⇒ Ai, for
every A1, . . . ,Ak ∈ D. In particular, F�n1� . . . �nk� → �ni�.

This ends our proof. �

We will now consider functional composition; in this case we must be care-
ful: although we can readily define composition by calling upon Schönfinkel’s
Theorem, this is not enough to guarantee that our resulting combinator works
well whenever the function we are representing is undefined. We will use
the same trick that is used in [1] to prove computational completeness of
λ-calculus.

Proposition 3.3.14 If f : N
k �→ N is defined by composition of the rep-

resentable functions h : N
m �→ N and g1, . . . , gm : N

k �→ N, then f is repre-
sentable.

Proof. Let G1, . . . ,Gm and H represent, respectively, g1, . . . , gm and h.
We would like to apply Schönfinkel’s Theorem, or rather Theorem 3.2.5, to
the term

H(G1x1 . . . xk) . . . (Gmx1 . . . xk).

In fact, if all of the intervening functions are defined, all works well. The
problem arises if one of them is not; for instance, if h is the first projection
and g1 is defined at (n1, . . . , nk), then f(n1, . . . , nk) will also be, regardless
of whether g2, . . . , gm are defined or not at (n1, . . . , nk).

We must, then, change the definition somewhat to cover also these cases.
Define the term t(x1, . . . , xk) as

(G1x1. . . xkKII). . . (Gmx1. . . xkKII)(H(G1x1. . . xk). . . (Gmx1. . . xk))

By Theorem 3.2.5 there is a combinator F such that, for all A1, . . . ,Ak ∈
D, FA1 . . .Ak ⇒ t(A1, . . . ,Ak) . We claim that F represents f . We proceed
by cases:

i. Suppose f(n1, . . . , nk) ↓. Then, in particular, both gi(n1, . . . , nk) ↓,
for 1 ≤ i ≤ m, and h(g1(n1, . . . , nk), . . . , gm(n1, . . . , nk)) ↓. Let vi =
gi(n1, . . . , nk). As G1, . . . ,Gm and H represent, respectively, g1, . . . , gm

and h, we know that:

• Gi�n1� . . . �nk� → �vi�, for 1 ≤ i ≤ m;

• H�v1� . . . �vm� → �h(v1, . . . , vm)�;
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• Gi�n1� . . . �nk�KII → I, by Lemma 3.3.10.

By definition of I, we can readily conclude that

F�n1� . . . �nk�
→ (G1�n1� . . . �nk�KII). . . (Gm�n1� . . . �nk�KII)

(H(G1�n1� . . . �nk�) . . . (Gm�n1� . . . �nk�))

⇒ I . . . I(H(G1�n1� . . . �nk�) . . . (Gm�n1� . . . �nk�))

⇒ (H(G1�n1�. . . �nk�) . . . (Gm�n1� . . . �nk�))

→ H�g1(n1, . . . , nk)� . . . �gm(n1, . . . , nk)�
⇒ �h(g1(n1, . . . , nk), . . . , gm(n1, . . . , nk))�
= �f(n1, . . . , nk)�

ii. f(n1, . . . , nk) ↑: there are two cases to consider.

a) for some j, gj(n1, . . . , nk) ↑. Choose the least j for which that hap-
pens; then we have:

• Gi�n1� . . . �nk� → �gi(n1, . . . , nk)�, for 1 ≤ i < j;

• for 1 ≤ i < j, Gi�n1� . . . �nk�KII → I, as Gi�n1� . . . �nk� reduces
to a numeral and every numeral is solvable by KII, in virtue of
Proposition 3.3.8.

• Gj�n1� . . . �nk�KII is unsolvable;

By definition of F, we know that we have

F�n1� . . . �nk�
⇒ (G1�n1� . . . �nk�KII). . . (Gm�n1� . . . �nk�KII)

(H(G1�n1� . . . �nk�) . . . (Gm�n1� . . . �nk�))

⇒ (Gj�n1� . . . �nk�KII). . . (Gm�n1� . . . �nk�KII)

(H(G1�n1� . . . �nk�) . . . (Gm�n1� . . . �nk�))

in virtue of the definition of I; but this last term is unsolvable, in
virtue of Proposition 3.3.6. Therefore, F�n1� . . . �nk� too is unsolvable,
by Proposition 3.3.7.

b) gi(n1, . . . , nk)↓ for 1≤ i≤m, but h(g1(n1, . . . , nk), . . . , gm(n1, . . . , nk))
is undefined. Then we can conclude, reasoning as in the first case,
that

F�n1� . . . �nk�
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⇒ (G1�n1� . . . �nk�KII). . . (Gm�n1� . . . �nk�KII)

(H(G1�n1� . . . �nk�) . . . (Gm�n1� . . . �nk�))

⇒ I . . . I(H(G1�n1� . . . �nk�) . . . (Gm�n1� . . . �nk�))

⇒ (H(G1�n1�. . . �nk�) . . . (Gm�n1� . . . �nk�))

→ H�g1(n1, . . . , nk)� . . . �gm(n1, . . . , nk)�

which by hypothesis is unsolvable, as H represents h and we as-
sumed that h(g1(n1, . . . , nk), . . . , gm(n1, . . . , nk)) ↑. Again, by Propo-
sition 3.3.7, we conclude that F�n1� . . . �nk� is unsolvable.

Therefore, F represents f , as we originally claimed. �

Before we prove the analogous results for recursion and minimalization,
we need some auxiliary facts. Recall that, to define a function by primitive
recursion or minimalization, we need to make tests on some or all of the
arguments. The following results show how to do that, and provide a general
if-then-else construction.

Definition 3.3.15 The boolean combinators in D are defined as follows:

• tt (true) is K;

• ff (false) is KI. �

A trivial but important result, proven in [5], is the following:

Proposition 3.3.16 tt �= ff . �

Definition 3.3.17 A combinator P is said to represent the property9 P ⊆
N

k, k ∈ N \ {0}, iff for all n1, . . . , nk ∈ N, if P (n1, . . . , nk) holds then
P�n1� . . . �nk� → tt; otherwise, P�n1� . . . �nk� → ff . �

The following is an immediate consequence of these definitions:

Lemma 3.3.18 Let P represent the property P ⊆ N
k, k ∈ N \ {0}, and

A,B ∈ D. Then:

• if P (n1, . . . , nk) holds, then P�n1� . . . �nk�AB ⇒ A;

• if P (n1, . . . , nk) doesn’t hold, then P�n1� . . . �nk�AB ⇒ B. �
9We implicitly identify a set of numbers with the property of belonging to that same

set.
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We will also need the following result:

Proposition 3.3.19 The combinator Z defined by Z
def
= Ttt represents the

property {0}.
Proof. We will prove that Z�n� does reduce to either tt or ff , according,
respectively, to whether n is 0 or not.

• Suppose n = 0. Then

Z�0� = TttI

⇒ Itt

⇒ tt

• Suppose n ≥ 0. Then

Z�n + 1� = Ttt(V(KI)�n�)

⇒ V(KI)�n�tt
⇒ tt(KI)�n�
= K(KI)�n�
⇒ KI

= ff

Therefore, Z represents the property {0}. �

We will now proceed to primitive recursion. As we will show computa-
tional completeness of combinatory algebras appealing to Proposition 3.3.12,
we can assume that we will only apply primitive recursion to total functions.

We start by defining � def
= Tff . Although � doesn’t represent the prede-

cessor function, we have the following result:

Proposition 3.3.20 ��n + 1� ⇒ �n�.

Proof. By definition,

��n + 1� = Tff�n + 1�
= T(KI)(V(KI)�n�)

⇒ V(KI)�n�(KI)

⇒ KI(KI)�n�
⇒ I�n�
⇒ �n�
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Having made this definition, we proceed to the result we need:

Proposition 3.3.21 If f : N
k → N is defined by recursion from repre-

sentable total functions g : N
k → N and h : N

k+2 → N, then f is repre-
sentable.

Proof. By hypothesis, there exist combinators G and H representing re-
spectively g and h; that is, for all n1, . . . , nk+2 ∈ N, we have

G�n1� . . . �nk� → �g(n1, . . . , nk)�

H�n1� . . . �nk+2� → �h(n1, . . . , nk+2)�
Consider now the following combinatory equation:

Fx1 . . . xk+1 = Zxk+1(Gx1 . . . xk)(Hx1 . . . xk(�xk+1)(Fx1 . . . xk(�xk+1))).

As Z,G and H are known, Proposition 3.2.7 guarantees the existence of
F such that, for all A1, . . . ,Ak+1 ∈ D, FA1 . . .Ak+1 reduces to

ZAk+1(GA1 . . .Ak)(HA1 . . .Ak(�Ak+1)(FA1 . . .Ak(�Ak+1))).

We will now prove by induction in nk+1 that F represents f :

• if nk+1 = 0, then

F�n1� . . . �nk��0� → Z�0�(G�n1� . . . �nk�)(H . . .)

→ G�n1� . . . �nk�
→ �g(n1, . . . , nk)�
= �f(n1, . . . , nk, 0)�

• if nk+1 = m + 1, the induction hypothesis allows us to conclude that
F�n1� . . . �nk��m� → �f(n1, . . . , nk,m)�. We then have:

F�n1� . . . �nk��m + 1�
→ Z�m + 1�(G . . .)

(H�n1� . . . �nk�(��m + 1�)(F�n1� . . . �nk�(��m + 1�)))

→ H�n1� . . . �nk�(��m + 1�)(F�n1� . . . �nk�(��m + 1�))

→ H�n1� . . . �nk��m�(F�n1� . . . �nk��m�)

→ H�n1� . . . �nk��m��f(n1, . . . , nk,m)�
→ �h(n1, . . . , nk,m, f(n1, . . . , nk,m))�
= �f(n1, . . . , nk,m + 1)�

32



Thus, F represents f , as we wanted to prove. �

Finally we proceed to minimalization. To simplify our proof, we will first
state an auxiliary result.

Lemma 3.3.22 Let P be a combinator representing the property P ⊆ N
k+1,

k ∈ N\{0}. Then there is a combinator µP satisfying, for every n1, . . . , nk ∈
N:10

• if there are m ∈ N such that P (n1, . . . , nk,m) holds and m∗ is the least
such m, then µP�n1� . . . �nk� ⇒ �m∗�;

• else, µP�n1� . . . �nk� is not solvable.

Proof. Consider the combinatory equation

Ax1 . . . xky = (Px1 . . . xky)y(Ax1 . . . xk(σy)).

By Proposition 3.2.7, there is a combinator A ∈ D such that, for all elements
A1, . . . ,Ak,B ∈ D,

AA1 . . .AkB ⇒ (PA1 . . .AkB)B(AA1 . . .Ak(σB)).

It is obvious, as P represents P , and according to the if-then-else con-
struction and definition of σ, that:

i. if P (n1, . . . , nk,m) holds, then A�n1� . . . �nk��m� ⇒ �m�;

ii. otherwise, then A�n1� . . . �nk��m� ⇒ A�n1� . . . �nk��m + 1�;

By Theorem 3.2.5, we can find µP such that

µPA1 . . .Ak ⇒ AA1 . . .Ak�0�.

Let n1, . . . , nk ∈ N be given. Then it is easy to see that:

• if there is a least m∗ such that P (n1, . . . , nk,m
∗) holds, then we have

µP�n1� . . . �nk� ⇒ A�n1� . . . �nk��0�
⇒ A�n1� . . . �nk��1�
⇒ . . .

⇒ A�n1� . . . �nk��m∗�
⇒ �m∗�

according to our previous remark on the relationship between A and
P .

10This construction is the same that is presented [7].
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• suppose that, for all m ∈ N, P (n1, . . . , nk,m) doesn’t hold. Then we
know that P(n1, . . . , nk,m) → ff . We then have:

µP�n1� . . . �nk� ⇒ A�n1� . . . �nk��0�
⇒ A�n1� . . . �nk��1�
⇒ . . .

⇒ A�n1� . . . �nk��m�
⇒ . . .

and therefore, by Theorem 3.2.4, we can conclude that µP�n1� . . . �nk�
has no normal form.

Furthermore, for all m ∈ N and N1 . . .Nm ∈ D, we can easily ap-
pend the sequence N1 . . .Nm to all terms in the previous sequence,
and conclude that µP�n1� . . . �nk�N1 . . .Nm has no normal form. By
Proposition 3.3.5, we conclude that µP�n1� . . . �nk� is not solvable.

Thus µP has the required properties. �

We can finally prove our result for minimalization:

Proposition 3.3.23 If f : N
k �→ N is defined by minimalization from a

representable function g : N
k+1 �→ N, then f is representable.

Proof. By hypothesis there is an element G ∈ D that represents g. Define P
as the combinator obtained by Theorem 3.2.5 from the term Z(Gx1 . . . xk+1)
and take F to be µP. Take n1, . . . , nk ∈ N; there are several cases to consider:

• f(n1, . . . , nk) ↓: in this case we know that f(n1, . . . , nk) is the least
m such that g(n1, . . . , nk,m) = 0; but this is precisely the least m
such that P (n1, . . . , nk,m), where P is the property represented by P.
Therefore, by Lemma 3.3.22, F�n1� . . . �nk� → �m�.

• f(n1, . . . , nk) ↑: there are two cases to consider.

– g(n1, . . . , nk,m) ↑ for some m ∈ N: then it is easy to see that
F�n1� . . . �nk�→Z(G�n1� . . . �nk��m∗�)�m∗�(A�n1� . . . �nk��m∗ +1�),
where m∗ is the minimal such m and A is the auxiliary combinator
defined in Lemma 3.3.22. Now we have:

Z(G�n1� . . . �nk��m∗�)�m∗�(A�n1� . . . �nk��m∗ + 1�)

⇒ Ttt(G�n1� . . . �nk��m∗�)�m∗�(A�n1� . . . �nk��m∗ + 1�)

⇒ (G�n1� . . . �nk��m∗�)�m∗�(A�n1� . . . �nk��m∗ + 1�)tt
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and the leftmost term in the last expression is by hypothesis not
solvable, hence the original one can not be so. Therefore F works
as expected in this case.

– for all m ∈ N, g(n1, . . . , nk,m) ↓ but g(n1, . . . , nk,m) �= 0. Then,
by Lemma 3.3.22, F�n1� . . . �nk� is not solvable.

Therefore F represents f . �

We summarize Propositions 3.3.13, 3.3.14, 3.3.21 and 3.3.23 in the fol-
lowing result:

Theorem 3.3.24 (Computational Completeness) If f : N
k �→ N is a partial

recursive function, then there is an element F ∈ D that represents f . �

It is interesting to compare the proof of these results with the equivalent
proof in [1] for λ-calculus, in face of the translation results presented in the
next section.

The question also arises whether every representable function is partial
recursive. We believe it to be so, although we know of no proof of this
fact; Engeler shows that not all functions are representable by expressing the
Halting Problem in combinatory algebras. See [5] for details.

3.4 Combinatory Algebras and λ-Calculus

To conclude, we will briefly show how untyped λ-calculus with empty context
and combinatory algebras can be related.

Definition 3.4.1 Let D be a combinatory algebra generated by K and S.
We define the translation of the elements of D into the set of λ-terms, which
we will denote by [·]λ : D → Λ, inductively by:

i. [x]λ = x, for all variables x;

ii. [K]λ = (λxy.x);

iii. [S]λ = (λxyz.xz(yz));

iv. [XY]λ = [X]λ[Y]λ. �

Notice that, in particular, this definition tells us that Λ is a combinatory
algebra.

For the reciprocal translation, we will start by showing how to simulate
abstraction in D; we capture the idea behind the proof of Theorem 3.1.5.
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We start by simulating abstraction; this is done by defining, for every
variable x, an auxiliary operator λ∗x that associates to every term t a term
t′ such that x does not occur in t′.

Definition 3.4.2 Let x be a variable. The operator λ∗x is defined induc-
tively by:

i. λ∗x.x = I;

ii. λ∗x.t = Kt if x does not occur in t;

iii. λ∗x.t1t2 = S(λ∗x.t1)(λ
∗x.t2). �

Definition 3.4.3 The translation of λ-terms into D, denoted by [·]CL : Λ →
D, is defined by:

i. [x]CL = x, for all variables x;

ii. [PQ]CL = [P ]CL[Q]CL;

iii. [λx.P ]CL = λ∗x.[P ]CL. �

These translations relate combinatory algebras and λ-calculus; in par-
ticular, we have the following result, which is easily proven by induction
(see [1]):

Proposition 3.4.4 Let t and t′ be terms over D. If t →w t′, then t →∗
β t′.

�

As a consequence, if the translation of a term is in β-normal form, then
that term is in w-normal form. Unfortunately the converse is not true—hence
the reason for the adjective “weak” in the reduction in combinatory algebras.
For example, consider SK. This term is in w-normal form; however, when
we consider the corresponding term in Λ, we get

[SK]λ = (λxyz.xz(yz))(λxy.x)

→β λyz.(λx′y′.x′)z(yz)

→β λyz.z

hence [SK]λ is not in β-normal form.
A consequence of this is that β-equality is a subset of w-equality (as

defined in Proposition 2.2.3) but not reciprocally. However, it is possible to
add axioms to D to make the relationship between both theories into a real
equivalence; this is done in some detail in Chapter 7 of [1].
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Chapter 4

Type Theory

4.1 Typed λ-calculus

In chapter 2 we presented what is called the pure (or untyped) λ-calculus.
We will now analyze some problems that emerge when we rethink the inter-
pretation of λ-terms and proceed to define what is generally known as typed
λ-calculus.

When we inductively defined λ-terms, we introduced the notions of ab-
straction and application, corresponding to functional abstraction and func-
tional application. However, the simple structure of λ-terms makes it impos-
sible to specify domains of the functions or to assert, in general, any property
about the result of an application. Typed λ-calculus provides a solution for
this problem.

The idea behind typed λ-calculus is the following: there is a given set of
types, which correspond to our possible domains, and each variable is assigned
a type. Also we have an operation on types, denoted by →, that will help
us in typing terms corresponding to functional abstraction given the types
of the intervening variables. For example, if x is a variable of type α, then
we want the term λx.x to be of type (α→α).

There are two different ways of introducing typed λ-calculus, usually
known as typing à la Curry and typing à la Church. We will consider only
the second kind, as it will be the one that will lead us into type theory.

We start by defining the set of types over a given set of type variables.

Definition 4.1.1 Let V be a set whose elements will be called type vari-
ables. The set of types over V is the set T inductively defined by:

i. V ⊆ T;

ii. if α, β ∈ T, then (α→β) ∈ T.
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We will use greek letters to denote both arbitrary type variables and arbitrary
types; this does not cause any ambiguity, since any type variable is itself a
type. �

We will now consider annotated λ-terms; these correspond to associating
types to the variables in the terms. Only bounded variables will have a
type—however we will have to assume types for other variables too, in order
to be able to associate a type with a given annotated λ-term.

Generic variables are defined as in untyped λ-calculus. As before, we will
use x, y, z, . . . to denote arbitrary variables.

Definition 4.1.2 The alphabet for the system λ→ of typed λ-calculus is
the union of the alphabet for untyped λ-calculus, a set of type variables V

and the set of special symbols {:,→}. �
By variable we will mean one of the variables from the alphabet for un-

typed λ-calculus.

Definition 4.1.3 The set of annotated λ-terms over T is the set ΛT induc-
tively defined by:

i. if x is a variable, then x ∈ ΛT;

ii. if x is a variable, α ∈ T and P ∈ ΛT, then λx :α.P ∈ ΛT;

iii. if P,Q ∈ ΛT, then (PQ) ∈ ΛT.

As before, we will use latin uppercase letters to denote arbitrary annotated
λ-terms. �

We will make some conventions, as before. Abstraction and application
follow the same associative rules as in pure λ-calculus; the operation →
defined on types is supposed to be right associative1, that is,

α1→α2→α3 denotes (α1→(α2→α3)).

Furthermore, we will omit the adjectives “typed” in “typed λ-calculus”,
referring explicitly to untyped λ-calculus whenever there is need, and “an-
notated” in “annotated λ-term”. We will even write only “term” in the last
case whenever there is no danger of confusion.

In order to assign types to λ-terms, we need the notion of context. Infor-
mally, a context is a set of type statements—that is, information about the
types of a set of terms. We make this more precise in the following definition:

1The reason for this is the known identification of functions of many variables with
functions from a one-dimensional space to a function space; that is, of f : A × B → C
with f̂ : A → (B → C), where f̂ is such that f̂(x)(y) = f(x, y).
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Definition 4.1.4 A statement is a pair M :σ, where M is a term and σ ∈ T.
M is called the subject of the statement and σ is called the predicate. �

Definition 4.1.5 A context is a set Γ of statements such that there are no
two statements in Γ with the same subject.

If Γ is a context and M : σ is a statement, we will often write Γ,M : σ
instead of Γ ∪ {M :σ}. �

We will now define what the type of a term is.

Definition 4.1.6 A statement M : σ is derivable in the system2 λ→ from
the context Γ, denoted by Γ � M : σ, iff it can be derived according to the
following rules:

Γ � x :α
Axiom

if (x :α) ∈ Γ

Γ � M : (α→β) Γ � N :α

Γ � (MN) :β
→ E

Γ, x :α � M :β

Γ � (λx :α.M) : (α→β)
→ I

We say that M is of type α, or that M has type α, in context Γ iff Γ � M :α.
We say that M is typable iff there is some type α such that M is of type

α; the type α is said to be inhabited iff there is some term M such that M is
of type α. �

The following result is easy to prove by structural induction:

Proposition 4.1.7 Let A ∈ ΛT and α, β ∈ T be such that � A : α and
� A : β. Then α and β coincide. �

Thus it makes sense to speak of the type of a term A.
As an example, we show how to derive the types of (typed λ equivalents

of) K and S:

Example 4.1.8 The following is a derivation in λ→ of � (λx :α.λy :β.x) :
(α→β→α):

x :α, y :β � x :α
Ax

x :α � (λy :β.x) : (β→α)
→ I

� (λx :α.λy :β.x) : (α→β→α)
→ I

�
2we will see other systems in the next section
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Example 4.1.9 The following is a derivation in λ→ of � (λx : (α → β →
γ).λy : (α→β).λz :α.xz(yz)) : (α→β→γ)→(α→β)→α→γ:

x, y, z � x : α→β→γ
Ax

x, y, z � z : α
Ax

x :α→β→γ, y :α→β, z :α � xz : β→γ
→ E

x, y, z � y : α→β
Ax

x, y, z � z : α
Ax

x :α→β→γ, y :α→β, z :α � yz : β
→ E

x :α→β→γ, y :α→β, z :α � xz(yz) : γ
→ E

x :α→β→γ, y :α→β � λz :α.xz(yz) : α→γ
→ I

x :α→β→γ � (λy : (α→β).λz :α.xz(yz)) : (α→β)→α→γ
→ I

� (λx : (α→β→γ).λy : (α→β).λz :α.xz(yz)) : (α→β→γ)→(α→β)→α→γ
→ I

�

Notice that, unlike in untyped λ-calculus, these terms are parameterized:
for each type α, β, γ ∈ T, there are terms Kα,β : α→β and Sα,β,γ : (α→β→
γ)→(α→β)→α→γ.

Also notice that these types correspond, if we read → as logical intuition-
istic implication and the type variables as propositional symbols, to valid
propositions in the intuitionistic propositional logic with single connective
→. We will explore this further later on, but at this point we would just
like to point out the following: the rules for elimination and introduction
of → correspond exactly, if we view types as propositions, to the rule of
Modus Ponens and the deduction theorem, respectively. As every term can
be generated from these two families of terms just by application and ab-
straction3, and by typing these operations become precisely → elimination
and introduction, we can conclude that the type of each typable4 term is an
intuitionistic tautology.

The reciprocal is also true: if we consider a valid intuitionistic proposi-
tion, then it can be generated from (α ⇒ (β ⇒ α)) and ((α ⇒ (β ⇒ γ)) ⇒
((α ⇒ β) ⇒ (α ⇒ γ))) by substitution of propositional symbols and use of
Modus Ponens and the deduction theorem (this is just the completeness of
intuitionistic propositional logic without negation). Therefore, if a proposi-
tion A is valid, there is a typed λ-term with type precisely A (replacing ⇒ by
→ and viewing variables both as propositional symbols and type variables).

We will summarize this result in the following proposition:

Proposition 4.1.10 Let α be a type and let A be the corresponding propo-
sition, when → is replaced by ⇒ and type variables are interpreted as propo-
sitional symbols. Then the type α is inhabited iff A is a theorem of intu-
itionistic proposition logic. �

3due to combinatorial completeness of the λ-calculus
4As is shown on the next section, not all λ-terms can be assigned a type; that is, the

map from ΛT to Λ that forgets the types is not surjective.
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A more detailed proof of this result can be found in [3].
Over the next sections we will extend our typed λ-calculus and further

develop the relationship with logic.
Some examples illustrating this and other properties of typed λ-calculus

will be given in Chapter 5; for simplicity, we will use the notation given here
instead of the more general notation for Pure Type Systems that will be
introduced in the next section.

4.2 Pure Type Systems

Typed λ-calculus immediately suggests a variety of generalizations. We will
briefly explore one of them, motivating the introduction of Pure Type Sys-
tems.

In the end of the last section, we saw that there are typed λ-terms Kα,β

such that � Kα,β : α→β→α, for all types α, β ∈ T.
The question naturally arises whether we cannot define a single λ-term K

that combines all of the terms Kα,β; this term would have as type α→β→α,
for every α, β ∈ T. Unfortunately the answer is no, and the reason for this
is simple: the syntax we gave for typed λ-calculus only allows us to use
variables of a fixed type. We can not construct terms where types are also
variables.

Well, what if we generalize our system? This is possible to do, in the
following way:

Definition 4.2.1 The system λ2 is defined as follows:

• types: given a set V of type variables, the set of types for λ2 is defined
inductively as follows:

i. V ⊆ T;

ii. if α, β ∈ T, then (α→β) ∈ T;

iii. if α ∈ V and β ∈ T, then (∀α.β) ∈ T.

• alphabet: the alphabet for λ2 is simply the alphabet for λ→ plus the
special symbols ∀ and Λ;

• terms: the set of terms in λ2 is inductively defined by:

i. if x is a variable, then x is a term;

ii. if x is a variable, P is a term and α ∈ T, then (λx :α.P ) is a term;

iii. if P and Q are terms, then (PQ) is a term;
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iv. if P is a term and α is a type variable, then (Pα) is a term.

v. if P is a term and α is a type variable, then (Λα.P ) is a term.

We will assume the usual conventions for parenthesis and associativity
as before; Λ is supposed to be the strongest binding operator.

• derivations: the rules for derivation in λ2 are the same as in λ→ plus
the two following extra rules:

Γ � P : M
Γ � (Λα.P ) : (∀α.M)

∀I if α is not free in Γ

Γ � P : (∀α.M)

Γ � PA :M [α := A]
∀E if A ∈ T

As before, we say that M is of type α, or that M has type α, in context
Γ iff Γ � M :α. �

These new rules, and the terms they type, are interpreted as follows:
a term (Λα.P ) parameterizes the term P (which is of a type eventually
depending on α) in this type variable. Thus, in this system there are, for
example, terms K and S such that, for all types α, β and γ, we have

� Kαβ : (α→β→α)

and

� Sαβγ : ((α→β→γ)→(α→β)→α→γ).

We present a derivation of these facts; remember that, as λ→ is a sub-
system of λ2, we can assume as proved that � Kα,β : (α → β → α) and
� Sα,β,γ : (α→β→γ)→(α→β)→α→γ.

Example 4.2.2 The following is a derivation of type for a term K such that
� Kαβ : (α→β→α):

� Kα,β : (α→β→α)
Th

� Λβ.Kα,β : ∀β.(α→β→α)
∀ I

� Λα.Λβ.Kα,β : ∀α.∀β.(α→β→α)
∀ I

�
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Example 4.2.3 Similarly, we present a derivation of the type of a term S
satisfying � Sαβγ : (α→β→γ)→(α→β)→α→γ:

� Sα,β,γ : ((α→β→γ)→(α→β)→α→γ)
Th

� Λγ.Sα,β,γ : ∀γ.((α→β→γ)→(α→β)→α→γ)
∀ I

� Λβ.Λγ.Sα,β,γ : ∀β.∀γ.((α→β→γ)→(α→β)→α→γ)
∀ I

� Λα.Λβ.Λγ.Sα,β,γ : ∀α.∀β.∀γ.((α→β→γ)→(α→β)→α→γ)
∀ I

�

In other words, K is simply Λα.Λβ.Kα,β and S is Λα.Λβ.Λγ.Sα,β,γ . Notice
how the dependency on types which Kα,β and Sα,β,γ had has been abstracted
at term level.

In Chapter 5 we will present more examples of terms that can be typed
in λ2.

As we did for λ→, we could now relate λ2 to second-order intuitionistic
propositional logic; in fact, for these two systems an equivalent of Proposi-
tion 4.1.10 can easily be proven. We will not do this, however, because we
will now generalize our construction of λ2 to arbitrary typing systems which
we will be able to relate to various logics in an uniform way.

Definition 4.2.4 The alphabet for a Pure Type System contains:

• an infinite sequence v1, v2, . . . of variables;

• a set C of constants;

• the special symbols λ, Π;

• punctuation marks (,),;,.; �

Arbitrary variables will be denoted by lowercase latin or greek letters
x, y, z, . . . , α, β, γ, . . .; the distinction between latin and greek letters is for
clarification only.

We will now define what will correspond to terms in a Pure Type System:

Definition 4.2.5 The set of pseudo-terms is inductively defined as follows:

i. all elements of C are pseudo-terms;

ii. if P and Q are pseudo-terms, then so is (PQ);

iii. if P and Q are pseudo-terms and x is a variable, then (λx.P ) and (Πx.P )
are pseudo-terms.
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We will denote arbitrary pseudo-terms by capital latin letters A,B, . . . �

The reason for the adjective “pseudo” is the following: unlike in λ-
calculus, we need to be able to construct expressions that are not terms
(in the sense that we will not be able to assign them a type) but that may
appear in the definition of terms. Another way to look at it is the following:
pseudo-terms are possible terms to which a type may be assigned by a Pure
Type System.

As for the structure of terms, the term (PQ) is interpreted as before
as the application of the term P to the term Q. The operators λ and Π
are called abstraction and product operators, respectively; the abstraction
operator works just as the λ in λ→ or λ and Λ in λ2; the product operator
corresponds to → in λ→ and ∀ in λ2—it provides types for terms generated
through abstraction. The meaning of these operators will become clearer
after we present the type assignment rules in Definition 4.2.8.

We can define reductions in the set of pseudo-terms just as we did for λ-
calculus—binary relations that are congruences with respect to the pseudo-
term formation operations.

We are now in a position to make our main definition:

Definition 4.2.6 A specification of a Pure Type System over a set of con-
stants C is a triple 〈S,A,R〉 where:

• S ⊆ C is a set, whose elements are called sorts;

• A is a set of statements c :s, called axioms, such that c ∈ C and s ∈ S;

• R ⊆ S3 is a set whose elements are called rules. �

Intuitively, the set C contains the entities with which we will work, namely
the basic elements of our terms and types. Among these, some (the elements
of S) are special types, in that a term A of type s ∈ S can itself be the type
of some other term. The axioms are the terms whose type we postulate, and
the rules allow us to build new terms and types from existing ones—the so
called product types; again, this will become clearer after Definition 4.2.8.

Definition 4.2.7 A Pure Type System consists of a specification and a
reduction in the set of pseudo-terms. �

We will usually omit the reference to the underlying set of constants and
to the notion of reduction, assuming that C = S and that the reduction in
the set of pseudo-terms is the identity unless otherwise specified, as the three
constituents of the specification of a Pure Type System are the ones that will
be relevant when we consider derivations.
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We define statements and contexts for Pure Type Systems just as we did
for λ→. From these, it is possible to define a notion of derivation that is
more general than that defined for that system and for λ2.

Definition 4.2.8 A statement A : B is said to be derivable from a context
Γ in a Pure Type System 〈S,A,R〉 iff Γ � A : B can be derived from the
following rules:

� c :s
Axiom c :s ∈ A

Γ � A :s
Γ, x :A � x :A

Start s ∈ S, x fresh

Γ � A :s Γ � B :C
Γ, x :A � B :C

Weakening s ∈ S, x fresh

Γ � F : (Πx :A.B) Γ � a :A

Γ � Fa :B[x := a]
Application

Γ � A :s1 Γ, x :A � B :s2

Γ � (Πx :A.B) : s3
Product (s1, s2, s3) ∈ R

Γ, x :A � B :C Γ � (Πx :A.C) : s

Γ � (λx :A.B) : (Πx :A.C)
Abstraction s ∈ S

Γ � A :B Γ � B′ :s
Γ � A :B′ Conversion s ∈ S, B reduces to B′

�

Examples of derivations within Pure Type Systems can be found in Chap-
ter 5; here we will limit ourselves to explaining the intended meaning of each
of the above rules.

The Axiom Rule is responsible for the intended meaning of the set of
axioms: it allows us to derive statements in A from any context.

The Start Rule is useful for adding hypothesis to a context: if we have
already derived A :s in context Γ, then A is a valid type and we can assume
that there is a variable x of type A.5

The Weakening Rule is very similar: it simply says that any statement
that can be inferred from Γ can still be inferred if we add hypothesis to Γ

5That is, it is consistent to assume the existence of such a variable; whether a term of
type A does exist or not is a different question. Notice that anything we derive from now
on is dependent on the hypothesis that x is of type A.
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(once again, these hypothesis must be of type x :A, where A is a valid type
in context Γ).

We will consider Application, Product and Abstraction next. As before,
the λ operator is used to define functions: if from Γ and the extra hypothesis
x :A we can derive B :C, then from Γ alone we can derive a function that for
any term of type A outputs a result of type C. The difference here is that
the type of the resulting term may also depend on the type of x; therefore,
the operator Π is introduced with the purpose of permitting abstraction at
the level of types. The Abstraction and Application rules control the type
assignment for terms generated by these operations, while the Product Rule
allows only for the formation of specific types. We will see later on that the
expressive power of a system is highly dependent on the operations that are
allowed here.

Finally, the Conversion Rule states that if two types B and B′ are con-
vertible (in the sense of Proposition 2.2.3) then any term of type B is also of
type B′.

We will now briefly show how the systems λ→ and λ2 can be interpreted
as Pure Type Systems. We start with λ→.

Definition 4.2.9 The Pure Type System λ→PTS is the Pure Type System
with specification 〈{∗,�}, {∗ :�}, {(∗, ∗, ∗)}〉. �

Definition 4.2.10 We define a canonical map Tr from the set of types of
λ→ into the set of pseudo-terms of λ→PTS inductively in the following way:

i. Tr(α) = α, for all α ∈ V;

ii. Tr(α → β) = Πx :Tr(α).Tr(β).

This translation allows us to interpret typed λ-terms as pseudo-terms in
λ→PTS—just translate the types using Tr. �

This translation expresses the intended meaning of product types: a term
M has type Πx : A.B iff Mx has type B[x := A] whenever x has type A.
In the case of λ→PTS , this is just the function space, as the limited set of
available rules does not allow B to depend on x.

This translation is well defined in the following sense:

Lemma 4.2.11 If α, β ∈ T, then Tr(α) :∗,Tr(β) :∗ �λ→PTS
Tr(α → β) :∗.

Proof. This is a direct consequence of the Product Rule and the definition
of Tr. �
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From this lemma it is easy to prove the following result, by induction on
the structure of terms:

Proposition 4.2.12 If α ∈ T, then Γ � Tr(α) : ∗, where Γ is the set of
statements of the form γ :∗ such that γ is a type variable in α. �

The following result is now quite simple. The proof given here is not
exactly the same as in [3], mainly because our definitions do not coincide
exactly, but it is in the same spirit.

Proposition 4.2.13 λ→ is equivalent to λ→PTS .

Proof. Notice that in the notion of Pure Type System there is no concept
of “type variable”. Therefore, we will show the above mentioned equivalence
in the following sense: Γ �λ→ M : σ iff Tr(Γ) ∪ ∆ �λ→PTS

M : σ, where ∆ is
the set of assertions α :∗ such that α is a type variable occurring in σ.

We will show the equivalence between these two systems by proving that
the rules of one can be derived from the rules of the other.

• We start by showing that the rules of inference in λ→ can be derived
in λ→PTS .

– Axiom Rule: we will consider first the case x :α �λ→ x :α. Consider
the following derivation in λ→PTS :

� ∗ :�
α :∗ � α :∗ Start

α :∗, x :α � x :α
Start

Further elements of Tr(Γ) can now be added to the left side of the
last expression by repeated use of the Weakening Rule.

– → I Rule: Suppose that in λ→PTS we can prove

Tr(Γ), x :Tr(α) � A :Tr(β).

By Proposition 4.2.12 we know that in this case

Tr(Γ) � (Πx :Tr(α).Tr(β)) :∗;

hence we can conclude from the Abstraction Rule that

Tr(Γ) � (λx :Tr(α).A) : (Πx :Tr(α).Tr(β)).

– → E Rule: immediate from the Application Rule.

47



• We will now show that application of the rules in λ→PTS can be imi-
tated by λ→.

– Axiom Rule: this rule simply states that � ∗ : �, and as ∗ is not
the translation of a typed λ-term there is nothing to prove.

– Start Rule: immediate from the Axiom Rule for λ→.

– Weakening Rule: Suppose that Γ � B : C, where Γ is the trans-
lation of a set ∆, B is the translation of a typed λ-term P and
C is the translation of a type σ, and that A is a type variable.
Then we can add at every step in the derivation of ∆ �λ→ M : σ
the extra hypothesis x : A to the context, still producing a valid
derivation. Thus, Γ, x :A � B :C is still the translation of a valid
derivation.

– Application Rule: this is just the → E Rule for λ→.

– Product Rule: this rule never corresponds to a derivation in λ→,
as it can only produce type assignments to pseudo-terms that
correspond to types in that system.

– Abstraction Rule: this rule corresponds to the → I Rule for λ→
with an extra hypothesis, therefore it is always applicable.

– Conversion Rule: this rule does not add anything to the set of
derivations, as we are assuming the identity reduction.

Therefore, λ→ and λ→PTS are equivalent. �

In view of this result, we will denote both systems simply by λ→, without
any ambiguity.

For λ2, we will just present the corresponding Pure Type System and
state without proof the corresponding result.

Definition 4.2.14 The Pure Type System λ2PTS is the Pure Type System
with specification 〈{∗,�}, {∗ :�}, {(∗, ∗, ∗), (�, ∗, ∗)}〉. �

Translation of types is as follows:

Definition 4.2.15 The canonical map Tr from the set of types of λ2 into
the set of pseudo-terms of λ2PTS is defined inductively as follows:

i. Tr(α) = α, for all α ∈ V;

ii. Tr(α → β) = Πx :Tr(α).Tr(β);

iii. Tr(∀α.β) = Πα :∗.Tr(β)6. �
6Remember that in this case α must be a type variable.
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As we already stated, the following result holds:

Proposition 4.2.16 λ2 is equivalent to λ2PTS . �

As we did for λ→, we will use λ2 for both systems, without any ambiguity.

4.3 The Lambda Cube

As we saw before, λ2 generalizes λ→, by permitting abstraction over type
variables as well as over generic variables. As Pure Type Systems, this cor-
responds simply to the addition of the triple (�, ∗, ∗) to the set of rules of
the specification.

Further generalization leads us to the Lambda Cube. The Lambda Cube
is a set of eight Pure Type Systems obtained from λ→ by adding to the
specification all possible combinations of rules (s1, s2, s3) such that s2 = s3 .
This system, described in detail in [3], has many interesting properties; we
will briefly examine some of them.

Definition 4.3.1 The Lambda Cube consists of eight Pure Type Systems
with specification 〈{∗,�}, {∗ :�},R〉, where the set of rules for each system
is the following:

System Rules
λ→ (∗, ∗, ∗)
λ2 (∗, ∗, ∗) (�, ∗, ∗)
λω (∗, ∗, ∗) (�,�,�)
λω (∗, ∗, ∗) (�, ∗, ∗) (�,�,�)
λP (∗, ∗, ∗) (∗,�,�)
λP2 (∗, ∗, ∗) (�, ∗, ∗) (∗,�,�)
λPω (∗, ∗, ∗) (�,�,�) (∗,�,�)
λPω (∗, ∗, ∗) (�, ∗, ∗) (�,�,�) (∗,�,�)

These systems are usually presented in the graphical way depicted in Fig-
ure 4.1. �

The arrows denote inclusion; that is, if there is an arrow from λ1 to λ2,
then Γ �λ2 A :B whenever Γ �λ1 A :B.

As we already did for λ→ and λ2, we can define translation maps [[·]]
from the set of well formed formulas of an intuitionistic logical system to the
set of pseudo-terms of each these systems7. We will not do this here; details

7This is known as the propositions-as-types interpretation of the Lambda Cube.
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Figure 4.1: The Lambda Cube

can be found in [3]; we will limit ourselves to presenting the corresponding
systems and stating the main result.

The eight logical systems involved in this equivalence are:

System Logic
λ→ p propositional logic
λ2 p2 second-order propositional logic
λω pω weakly higher-order propositional logic
λω pω higher-order propositional logic
λP P first-order logic
λP2 P2 second-order logic
λPω Pω weakly higher-order logic
λPω Pω higher-order logic

These systems, as well as the details of the translation, are described
in [3]. They can also be presented in a graphical way as shown in Figure 4.2.

The main result is the following:

Theorem 4.3.2 Let A be a formula in a logic of the logical cube. Then the
formula is valid iff A is inhabited in the corresponding system of the Lambda
cube. �

We will give several examples of this in the next section.
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Figure 4.2: The cube of logical systems
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Chapter 5

Problems in Type Theory

In this section we will give examples of some of the properties of type systems
presented in the last section. These examples are chosen from the problems
proposed in [2]. We will indicate next to each example the number by which
the problem is presented in that paper.

5.1 Typed λ-Calculus

In this section, we will use the simpler notation of section 4.1 instead of the
more cumbersome for Pure Type Systems. Also, we will often omit types of
variables in the upper branches of proof trees whenever they can easily be
understood from the context.

We start by presenting an example of a non-typable λ-term (problem 2).

Example 5.1.1 The λ-term λx.xx is not the image of any typed λ-term.

Proof. The forgetful map from ΛT into Λ only forgets types; thus, if there
is a typed λ-term M mapped into λx.xx, then M has to be of the form
λx :α.xx.

Consider a proof of � (λx : α.xx) : β. As (λx : α.xx) can only be typed
using rule → I, necessarily β is (α→γ) and x :α � xx :γ.

Further reasoning of the same kind leads us to the conclusion that a proof
tree for � (λx :α.xx) : β must have the following structure:

x :α � x :δ→γ x :α � x :δ

x :α � xx :γ
→ E

� (λx :α.xx) : α→γ
→ I
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for some type variable δ; this implies that α, δ and δ→γ coincide. But this
is absurd, as no type can be a proper subexpression of itself. Therefore, M
is not typable. �

We will now show some examples of how proofs of valid propositions of
intuitionistic logic can be represented by typed λ-terms. In the next section
we will extend this to other Pure Type Systems.

Throughout this section and the next we will use the natural deduction
systems for logics presented in [8]. To stress the parallelism between proofs
in these systems and type assignment proofs we will use the symbol → to
denote implication.

Example 5.1.2 (α → α)

We start with a very simple example (problem 1.1 of [2]), the same one
that we gave to motivate the introduction of types. We start by presenting
a proof of this formula in natural deduction.

α1

α→α → I, 1

As explained in [8], the numbered formulas are hypothesis that are in-
troduced at some point; some of the rules (in this case, the rule → I) can
eliminate these hypothesis, meaning that the formulas derived later on no
longer depend on them. The number next to the rule indicates which hy-
pothesis was cancelled in this step.

The corresponding typed λ-term is (λx :α.x); the proof is simply

x :α � x :α
Ax

� λx :α.x : α→α
→ I

Notice the structural similarity between the two proofs; cancellation of
hypothesis 1 (α) in the natural deduction proof corresponds to the binding
of the variable x (which represents α) by the λ-operator. Also, the terms
on the left side at each node indicate the hypothesis that are open at that
node. Thus, from the λ-term alone it is possible to reconstruct the natural
deduction proof. �

Just for the sake of the exposition we reproduce the proofs we already
gave for Kα,β and Sα,β,γ , together with the natural deduction proofs for the
corresponding propositions (problems 1.2 and 1.3 of [2]).
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Example 5.1.3 (α → (β → α))
Proof in natural deduction:

α1

β→α
→ I, 2

α→(β→α)
→ I, 1

Corresponding derivation in λ→:

x :α, y :β � x :α
Ax

x :α � (λy :β.x) : (β→α)
→ I

� (λx :α.λy :β.x) : (α→(β→α))
→ I

�

Example 5.1.4 (α → (β → γ)) → ((α → β) → (α → γ))
Proof in natural deduction:

�� ������

�
� �

�� ����������

���
� �

� � �

��� � �� �

�����������
� �� �

�����������������������
� �� �

Corresponding derivation in λ→:

x, y, z � y : α→β
Ax

x, y, z � z : α
Ax

x :α→β→γ, y :α→β, z :α � yz : β
→ E

x, y, z � x : α→(β→γ)
Ax

x, y, z � z : α
Ax

x :α→(β→γ), y :α→β, z :α � xz : β→γ
→ E

x :α→(β→γ), y :α→β, z :α � xz(yz) : γ
→ E

x :α→(β→γ), y :α→β � λz :α.xz(yz) : α→γ
→ I

x :α→(β→γ) � (λy : (α→β).λz :α.xz(yz)) : (α→β)→(α→γ)
→ I

� (λx : (α→(β→γ)).λy : (α→β).λz :α.xz(yz)) : (α→(β→γ))→((α→β)→(α→γ))
→ I

�

Finally, we will present an example of a valid tautology (problem 1.4
of [2]) and try to give some insight on the construction of the corresponding
λ-term, from which we hope to reinforce the idea that this process might be
simpler than directly prove the formula in natural deduction. Henceforth, we
will use the conventions of associativity for → in the type assignment proofs.

Example 5.1.5 (α → (α → β)) → (α → β)
Due to the definition of →, a term of type (α → (α → β)) → (α → β)

must be a function with arguments x : (α→(α→β)) and y :α which will give
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an output of type β. As x is in this case itself a function that on receiving
two arguments of type α returns a value of type β, it is easy to conclude that
the simplest way to produce a term of type β is to evaluate x when both
arguments are set to y; this produces the term xyy. Thus, the λ-term we are
looking for is λx : (α→α→β)λy :α.xyy.

We start by checking the type of this term1:

�� � � � ��
��

�� � � � � �������
��

�� � � � ��
��

� � �������� � �� � �� � �����
� �

� � �������� � �� � ��� � �
� �

� � ������� � ��� ������� � �����
� �

� ��� ��������� ������� � �����������
� �

Finally, we can prove the original formula using natural deduction. We
already know the structure of the proof tree, as well as the hypothesis to be
used (they are simply the types of x and y in the above term) and where they
should be cancelled (this is just where x and y are bounded by λ-abstraction).

Thus, we can build the following proof:

��

�� ����������

���
� �

�
� �

���
� �� �

���������������
� �� �

�

We will now introduce negation. In intuitionistic logic, (¬α) can be de-
fined as abbreviation of (α →⊥), where ⊥ is the falsum, a formula that is
always false. Unfortunately, we do not have type constants, so we can not
reproduce this construction in λ→. However, we can define an analog of it—
namely, we can choose a fresh2 type variable γ and define (∼ α) = (α→γ).

We show two examples of proofs using this new connective (problem 3
of [2]).

Example 5.1.6 (α → β) → (∼ β →∼ α)
When we expand this formula using the definition of ∼, we obtain (α→

β)→ ((β → γ)→ (α→ γ)). As before, it is easy to see that a λ-term of this
type must be a function that receives arguments x : (α→β), y : (β→γ) and

1Notice that the construction of this tree is purely mechanical, due to the deterministic
nature of the rules involved.

2That is, a variable not occurring anywhere in the formula we want to negate.
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z :α and produces an output of type γ. Well, the obvious choice is applying
x to z, obtaining (xz) :β, and feeding this term as input to y. We obtain the
following proof tree:

�� �� � � � ��
��

�� �� � � � � �����
��

� � ������ � � ������ � �� � �� ��
� �

�� �� � � � � �����
��

� � ������ � � ������ � �� � ����� � �
� �

� � ������ � � ����� � ��� ��������� � �����
� �

� � ����� � ��� � ������� ��������� � �����������
� �

� ��� � ������� � ������� ��������� � �������������������
� �

From this term it is easy to generate the proof in natural deduction for
the original formula:

�� ������

�
� �

������

� � �

��� � �� �

�����������
� �� �

�������������������
� �� �

�

Before we present the second example, we need to make a remark. In
intuitionistic logic with falsum, there is an inference rule stating that from
⊥ anything is derivable. As we do not have that rule in λ→, we will have
to assume as an extra hypothesis the existence of a term exfalso of type
(γ→α).

Example 5.1.7 ∼∼ (∼∼ α → α)
This is a tricky one. We need to find a λ-term of type (((((α → γ) →

γ) → α) → γ) → γ); this must be a function that on an input x of type
((((α→γ)→γ)→α)→γ) returns an output of type γ.

The only way of producing such an output is by applying x to an object
A of type (((α→γ)→γ)→α). That is, A must be a function that receives
as argument any y of type ((α→γ)→γ) and returns a value of type α.

Now using x and y we must build a term B of type α; one possible way is
by applying exfalso to another term C of type γ. This can be done through
finding a term D of type (α→γ) and applying y to it.

Such a D must be a function that receives as argument z of type α and
returns a term of type γ. Now we can again look at our original x and apply
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it to a function that receives an argument of type ((α→γ)→γ) and returns
z.

Carefully following the above line of reasoning we can arrive at the fol-
lowing term:

λx : ((((α→γ)→γ)→α)→γ).x(λy : ((α→γ)→γ).exfalso(y(λz :α.x(λw : ((α→γ)→γ).z))))

The proof that this term is indeed of type (((((α→γ)→γ)→α)→γ)→γ)
is presented in Figure 5.1 (justifications for axioms are omitted) . To make
reading easier, we present here the types of the different variables that appear
in the proof and omit them in the deduction tree.

Variable Type
x ((((α→γ)→γ)→α)→γ)
y ((α→γ)→γ)
z α
w ((α→γ)→γ)

Finally, we can obtain the derivation for the original formula as we show
in Figure 5.2.

�

5.2 Propositions as Types

In this section, we will present some more examples of the propositions-
as-types interpretation of the systems of the Lambda Cube. We will show
how pseudo-terms codify proofs of formulas in the different systems, and
compare the proofs in natural deduction with the structure of the pseudo-
terms involved. In most cases we will not detail the proof that the term has
the required type, giving an overall justification that it is indeed the case.

We start by giving some proofs in second-order propositional logic. By
Theorem 4.3.2, this is equivalent to giving typed terms in λ2; we will use
the simpler notation we introduced for this system instead of the general one
when we view it as a Pure Type System, that is, we will write (∀α.P ) instead
of (Πα :∗.P ).

Example 5.2.1 Second-order intuitionistic propositional logic comes with
a natural candidate for falsum, which is (∀α.α); in fact, this proposition has
the usual properties of the intuitionistic ⊥, in particular (∀β.(∀α.α) → β).
This is quite obvious in both systems; the relevant term of λ2 is (λβ :∗.λx :
(∀α.α).xβ) (problem 9 of [2]).

58



�
�
��
��
�
��
�

�

�
�
��
��
�
��
��
�

�
�
��
��
�

�
�
��
��
�
��
��
�

�

�
�
��
��
�
��
��
��
�

�

�
�
�
�
��
�
��
��
��
��
�

�

�
�
��
��
�
��
��
��
�

��
�
��
��
��
��
�

�
��
�
��
�
�
�

�

�
�
��
��
�
��
��
��
�

�
��
�
��
��
�

�

�

�
�
��
��
�
��
��
�

�
�
��
��
�
��
��
��
�

�
�
�

�

�
�
��
��
�
��
��
�
�
��
�
��
��
�
��
��
��

�

�

�
�
��
��
�
��
��
�
�
�
��
��
�
��
��
�
��
��
�
��
��
��
�

�

�

�
�
��
��
�
��
�

��
�
��
�
��
��
�
��
��
�
��
��
�
��
��
��
��
��
�
�

�
��
�
��
�
�
�

�

�
�
��
��
�
��
�

�
��
�
��
�
��
��
�
��
��
�
��
��
�
��
��
��
��

�

�

�
�
��
��
�
�
�
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
��
��
�
��
��
��
�

�
��
�
��
�
��
�
��
�
�
�

�

F
ig

u
re

5.
1:

D
er

iv
at

io
n

of
T

y
p
e

A
ss

ig
n
m

en
t

59



�
�

���
�
�

�
�
�

�
�
�

�
�
�

�
��

����
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�

�

�
�
�

�
�
�

�
��

��
�
�

�
�
�

�
�
�

�

�

�

�

�

���
�
�

�
�
�

�
�
�

�
�
�

�
��

����
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�

�

�����
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
��

F
igu

re
5.2:

N
atu

ral
D

ed
u
ction

D
erivation

60



We present the proof of this fact in several steps. We start by showing
that (∀β.(∀α.α)→β) is a valid type:

� � ��
��

� � ��
��

� � ��
��

� �� � � ��
�

� � ��
��

� � ��
��

� �� � � ��
�

� ��� � �� � � ��
��

� �� � ������ ��
�	
�

� � ��
��

� � ��
��

� �� � � ��
��

� ������ ��
�	
�

� � ��
��

� � ������ � � ��
�

� ��� � � ������ � � ��
��

� �� � �������� ��
�	
�

� ������������� ��
�	
�

Using as lemmas the various formulas that occur in the previous tree, we
can now prove that our term has the intended type:

� �� � ������ ��
�

� ��� � � ������ � � � ������
��

� ��� � � ������ � � ��
�

� ��� � � ������ � �� ��
���

� �� � �������� ��
�

� �� � �� � ��������� � ��������
��	

� ������������� ��
�

� ��� ����� � ���������� � �������������
��	

From this proof it is simple to generate the corresponding proof in natural
deduction. Notice that, as we are treating λ2 as a Pure Type System, there
is a part of the derivation which is ignored—namely, the part corresponding
to the proof that the required type is indeed a type. This corresponds to
checking that the corresponding formula is a well formed formula, which is
always guaranteed in proof trees for natural deduction systems. Therefore,
our proof is:

∀α.α
β

∀E
(∀α.α)→β

→ I, 1

∀β.((∀α.α)→β)
∀I

�

From now on, we will write ⊥2 for the type (∀α.α), and ¬α for ⊥2 →α;
exfalso will denote the (canonical) inhabitant of type (∀β.⊥2→β).

At this stage, the process of proving that a given term has a certain type
should be clear; in fact, this problem is decidable3 and easily implemented
in a computer algorithm. Therefore, as things begin to get more compli-
cated, we will hereafter present terms with their type without showing the
corresponding proof tree.

3This is quite easy to prove, by structural induction.
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In second-order proposition logic we can generalize Examples 5.1.2 and
the like by quantifying over α, β and other intervening type variables; this
corresponds, as we showed before, to generating a new term in λ2 that
receives those types as arguments. When we get to negation, however,
things become more interesting: we no longer need exfalso as a hypoth-
esis, as in the previous example we have shown that there is an inhabi-
tant of type (∀β.(⊥2 → β)). For curiosity’s sake we present a term of type
∀α.¬¬(¬¬α→α) (problem 10 of [2]). Notice that this term is easy to obtain
from the term in Example 5.1.7.

Example 5.2.2 The term

λα :∗.λx : (¬(¬¬α→α)).x(λy :¬¬α.exfalsoα(y(λz :α.x(λw :¬¬α.z))))

has type ∀α.¬¬(¬¬α→α). �

We will now move over to first-order predicate logic. According to The-
orem 4.3.2, we must now change our frame of reference to the system λP .

The main difference between this system and λ→ is the introduction
of the rule (∗,�,�). This rule allows us to define functions that produce
output on types, which we could not do in λ→; notice also that this system
generalizes λ→ in quite a different way than λ2 did: in λ2, we can define
functions that act on types and return terms; in λP we have functions acting
on terms and returning types.

The motivation behind this generalization is quite easy to explain. We
want to have parameterized types, that is, types depending on terms. Thus,
we might have a collection A of terms, to each of which we can assign a type.
This can be represented by a function f from A into ∗, which will have as
type A→∗.
Example 5.2.3 In λP we can prove that every antisymmetric relation is
irreflexive (problem 18 of [2]).

We will start by representing this proposition in first-order predicate logic.
We need a set A and a relation R ⊆ A × A; also we will suppose that R is
antisymmetric, that is, ∀x,y∈AR(x, y) → ¬R(y, x). Then we want to prove
that R is irreflexive, that is, that ∀x∈A¬R(x, x).

This translates quite immediately into λP in the following way: just read
∀x∈A as Πx :A; negation is defined as for λ→.4

As for A, it is just a type; how do we represent R? Well, it is just a
function that assigns to every pair of elements of A a type—that is, R :A→
A→∗. Intuitively, for x, y :A, the type Rxy will be inhabited iff R(x, y).

4Notice that ⊥2 is not a valid type in λP .
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Define Γ = A :∗, R :A→A→∗, antisym :Πx, y :A.(Rxy→ ∼Ryx).
Given these representations, what we want to prove is that there is a term

M such that
Γ � M : (Πx :A.(∼Rxx)).

We start by noticing that, by use of the Application Rule,

Γ, x :A � antisymxx : (Rxx→∼Rxx) (5.1)

Remember that ∼ Rxx is by definition (Rxx → γ), for some fresh γ.
We are trying to find an inhabitant of this type, given x; this corresponds
to defining a function that receives an input of type Rxx and produces an
output of type γ. This suggests that we add an extra hypothesis y :Rxx. It
is now easy to see that from Equation 5.1 we can conclude, using Weakening
and Application, that

Γ, x :A, y :Rxx � antisymxxyy :γ (5.2)

Now, using Abstraction twice, we conclude that

Γ � (λx :Aλy :Rxx.antisymxxyy) : (Πx :A.(∼Rxx)) (5.3)

From the derivation of type assignment for this term it is easy to produce
the corresponding derivation in natural deduction for the corresponding first-
order formula. �

To conclude, we will present a lengthy example showing how algebraic
reasoning can be incorporated in λP and λP2. This example corresponds to
problems 19 and 26 of [2].

We start with an algebraic concept.

Definition 5.2.4 An abelian group is a structure 〈G, +〉 where + : G →
G→G is a commutative and associative operation with 0 element such that
every element of G has an inverse. �

As is usual, we denote the inverse of x by (−x).

Proposition 5.2.5 For every x ∈ G, (−(−x)) = x.

Proof. By definition, the inverse of x satisfies

x + (−x) = 0 (5.4)

Adding (−(−x)) to both sides of this equation, we obtain

(x + (−x)) + (−(−x)) = (−(−x)) (5.5)
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By associativity, we conclude that

x + ((−x) + (−(−x))) = (−(−x)) (5.6)

But (−(−x)) is the inverse of (−x), so (−x)+(−(−x)) = 0. Substituting
this in the last equation, we get

x + 0 = (−(−x)) (5.7)

and, by definition of zero,
x = (−(−x)) (5.8)

which by symmetry is precisely

(−(−x)) = x (5.9)

as we wanted to prove. �

We will now formalize this proof using λP . We start with a type G : ∗,
that will represent our group.

Equality is a binary relation in G that is reflexive, symmetric and transi-
tive. This can be represented by the following context Γ1:

Γ1 = eq :G→G→∗,
refl :Πx :G.eqxx,

sym :Πx, y :G.eqxy→eqyx,

trans :Πx, y, z :G.eqxy→eqyz→eqxz.

For example, if eqxy is inhabited by A, then symxyA is an inhabitant
of eqyx.

Next, we need to define the operations in G. We will represent + by a
term +:G→G→G—that is, if x and y are of type G, then so is (+xy).

The properties of this operation are presented in context Γ2:

Γ2 = +:G→G→G,

0:G,

− :G→G,

comm :Πx, y :G.eq(+xy)(+yx),

assoc :Πx, y, z :G.eq(+(+xy)z)(+x(+yz)),

inv :Πx :G.eq(+x(−x))0,

neutral :Πx :G.eq(+x0)x,
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We will write x for (−x) and x for (−(−x)), so as to make the notation
lighter.

Finally, addition is a congruence with respect to equality, that is, if two
terms are equal then adding them to the same element of G produces two
equal terms. We specify this in another context:

Γ3 = congr :Πx, x′ :G.eqxx′→Πy :G.eq(+xy)(+x′y).

Defining Γ = G :∗, Γ1, Γ2, Γ3, we will now find an M such that Γ, x :G �
M :eqxx.

Proposition 5.2.6 There is a term M such that Γ, x :G � M :eqxx.

Proof. We will just repeat the above algebraic proof, presenting terms
that will have each of the preceding equations as types. All statements are
understood to be derivable in context Γ, x :G.

Equation 5.4 is easy to produce; we just take inv and apply it to x.

invx :eq(+xx)0

We now want to add x to both sides of equation 5.4. This can be done
in two steps. First we apply congr to +xx and 0, obtaining a term

congr(+xx)0 : eq(+xx)0→Πy :G.eq(+(+xx)y)(+0y).

We apply this to invx and x, obtaining

congr(+xx)0(invx)x : eq(+(+xx)x)(+0x).

We will denote this term symply by A.
In order to have exactly equation 5.5 we want to have symply x as the last

subterm of the last expression. This is not hard to do; we start by applying
neutral to x, obtaining

neutralx : eq(+x0)x;

comm applied to 0 and x yields a term

comm0x : eq(+0x)(+x0).

Now we just have to combine these three terms using trans. First we get

trans(+(+xx)x)(+0x)(+x0)A(comm0x) : eq(+(+xx)x)(+x0),
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which we will denote by B, and finally

trans(+(+xx)x)(+x0)xB(neutralx) : eq(+(+xx)x)x.

In the sequence, we will denote this term by C. Notice that C proves
equation 5.5.

We move on to equation 5.6. This is just associativity and transitivity
applied to the previous equation. First, we apply assoc to x, x and x,
obtaining

assocxxx : eq(+(+xx)x)(+x(+xx)).

Now we need to apply symmetry to the last expression and, by transitiv-
ity, we obtain the desired result. Define D to be the term

sym(+(+xx)x)(+x(+xx))(assocxxx) : eq(+(+xx)x)(+x(+xx)).

We now apply trans to the arguments (+(+xx)x), (+x(+xx)) and x and
then to C and D; the term we get is

trans(+(+xx)x)(+x(+xx))xCD : eq(+x(+xx))x,

therefore proving equation 5.6. We will refer to this term as E.
We now want to show that the lefthandside of 5.6 is equal to x + 0. This

is done using the definition of inverse. We start with

invx : eq(+xx)0.

We apply congruence, obtaining

congr(+xx)0(invx)x : eq(+(+xx)x)(+0x),

which we will denote by F .
Using transitivity with F and

comm0x : eq(+0x)(+x0)

allows us to obtain

trans(+(+xx)x)(+0x)(+x0)F (comm0x) : eq(+(+xx)x)(+x0),

which we will refer to as G.
Applying symmetry we obtain

sym(+(+xx)x)(+x0)G : eq(+x0)(+(+xx)x);
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naming this term H, commutativity and transitivity allow us to find

trans(+x0)(+(+xx)x)(+x(+xx))H(comm(+xx)x) : eq(+x0)(+x(+xx)).

This auxiliary term, which we will call J , can be combined with E using
transitivity, producing

trans(+x0)(+x(+xx))xJE : eq(+x0)x.

This term, which we will denote as K, proves equation 5.7.
Now it is easy. We have

neutralx : eq(+x0)x;

applying symmetry we get

sym(+x0)x(neutralx) : eqx(+x0).

By transitivity with K we get

transx(+x0)xK(sym(+x0)x(neutralx)) : eqxx,

which we will name L.
This is equation 5.8. Applying symmetry yields our final result:

symxxL : eqxx.

M is just the term λx :G.(symxxL).
Type-checking M is far from being trivial, but it is a purely mechanical

task. Therefore, we will only present the full expression for M as a curiosity
in Figure 5.2.

�

For the next property we need to make another definition. We use the
following abbreviation, where n ∈ N:

nx
def
= x + . . . + x︸ ︷︷ ︸

n times

Definition 5.2.7 An element x of an abelian group is said to have torsion
iff there is a natural number n such that nx = 0. �

It is obvious that, in particular, if 2x = 0, then x has torsion. We will
show this using the context Γ above defined; however, we will use a stronger
equality than eq.
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λx :G.
(symxx

(transx(+x0)x
(trans(+x0)(+x(+xx))

(trans(+x0)(+(+xx)x)(+x(+xx))
(sym(+(+xx)x)(+x0)

(trans(+(+xx)x)(+0x)(+x0)
(congr(+xx)0(invx)x)
(comm0x)))

(comm(+xx)x))
(trans(+(+xx)x)(+x(+xx))x

(trans(+(+xx)x)(+x0)x
(trans(+(+xx)x)(+0x)(+x0)

(congr(+xx)0(invx)x)
(comm0x))

(neutralx))
(sym(+(+xx)x)(+x(+xx))

(assocxxx))))
(sym(+x0)x

(neutralx))))

Figure 5.3: Inhabitant of Πx :G.(eqxx)
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Definition 5.2.8 The Leibniz equality on type A :∗ is defined by

eqLxy
def
= ΠP :A→∗.Px→Py,

in context x, y :A. �

We will not prove, but eqL is an equivalence relation (problem 25 of [2]),
therefore has all the usual properties of equality. In fact, eqL is an extensional
equality: two terms x and y of type A are identified by eqL iff there is no
type-assignment function from A that distinguishes them.

Proposition 5.2.9 There is a term T such that:

i. Γ � T :G→∗;
ii. for x :G, Tx is inhabited iff x has torsion.

Proof. Following the suggestion in [2], we start by defining a term Q :G→
G→∗ such that Qxy is inhabited iff y is in the smallest subset of G containing
x and closed under addition. As before, all statements are understood to be
derivable in context Γ, x :G or Γ, y :G.

We can represent the above sentence in second-order predicate logic by
the following sentence:

∀P.[(P (x) ∧ ∀z∈G[P (z)→P (x + z)])→P (y)],

that is, y is in all sets5 containing x and closed under addition of x. This is
precisely the set we wanted to characterize, so we just have to translate this
proposition as a type.

As we are working in second order, we can define conjunction by abbre-
viation as

α ∧ β
def
= (∀γ(α→β→γ)→γ).

P becomes a term of type G→∗, and we get

Qxy = ΠP : (G→∗).[Πγ :∗.(Px→Πz :G.(Pz→P (+xz))→γ)→γ]→Py.

Observe that Qxy : ∗ is inhabited iff we can, given P :G→∗, an inhabitant
of Px and a function from Pz into P (+xz), find an inhabitant of Py.

Define now T = λx :G.Qx0. Then T :G→∗ and Tx is inhabited iff Qx0
also is, which happens iff 0 is in all the sets containing x and closed under
addition. �

5Remember that subsets of G are equivalent to predicates with domain G.
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Proposition 5.2.10 There is a term X such that

Γ � X : (Πx :G.eqL(+xx)0→Tx).

Proof. We will start by assuming

x : G

and
ω : eqL(+xx)0.

Using x and ω we want to find a term of type Tx.
Developing Tx = Qx0, we get

ΠP : (G→∗).[Πγ :∗.(Px→Πz :G.(Pz→P (+xz))→γ)→γ]→P0.

An inhabitant of Tx will then have to receive arguments P : (G → ∗) and
α : (Πγ : ∗.(Px → Πz : G.(Pz → P (+xz)) → γ) → γ) and produce output of
type P0.

Suppose then that
P : (G→∗)

and
α : (Πγ :∗.(Px→Πz :G.(Pz→P (+xz))→γ)→γ).

In this context, we can show that P0:∗, hence

α(P0) : (Px→Πz :G.(Pz→P (+xz))→P0)→P0.

In order to find an inhabitant of P0, we can try to find a term of type
(Px→Πz : G.(Pz →P (+xz))→P0) and apply α(P0) to it. This term will
be of the form

λA :PxλB : (Πz :G.(Pz→P (+xz))).C

with C :P0. So let us now add to the context

A : Px

and
B : (Πz :G.(Pz→P (+xz))).

As we have by hypothesis x :G, we get

Bx : Px→P (+xx).

We just supposed that A :Px, so we can apply Bx to A obtaining

BxA : P (+xx).
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By hypothesis ω :eqL(+xx)0, that is,

ω : ΠP : (G→∗).(P (+xx)→P0).

In particular,
ωP : (P (+xx)→P0)

and
ωP (BxA) : P0.

Then we can define D as (λA :PxλB : (Πz :G.(Pz→P (+xz))).ωP (BxA))
and we have

D : (Px→Πz :G.(Pz→P (+xz))→P0);

therefore,
α(P0)D : P0.

Applying abstraction, we can conclude that X is the term (types are
omited)

λx.λω.λP.λα.[α(P0)(λA.λB.(ωP (BxA)))]

and that
Γ � X : (Πx :G.eqL(+xx)0→Tx).

�

5.3 Computability in Pure Type Systems

In this last section, we will show how Pure Type Systems also work as a
model of computation. These examples show another aspect of these systems
in which we have not focused much until now.

We will start by introducing a numeral system for untyped λ-calculus;
then, we will proceed to generalize it to typed λ-calculus and progressively
to other type systems. Also we will show how to define functions on these
numerals; computational completeness of λ-calculus is proved in Chapter 11
of [1]6, so we will not dwell on it, preferring to give some specific examples.

We start with some notation.

Definition 5.3.1 Let F,X be λ-terms and n ∈ N. The term F nX is defined
inductively as follows:

6Although the proof given there is not for the numeral system we shall use, but rather
for the one introduced in Chapter 3, in Chapter 6 the author explains why the proof he
gives simultaneously covers both systems.
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i. F 0X is X;

ii. F n+1X is F (F nX). �

Definition 5.3.2 The Church numerals in Λ are defined as follows: if n ∈ N

then cn = λfλx.fnx. �

We will not prove it, but these numerals share the properties that were
earlier discussed to be important; namely, cn = cm iff n = m.

We could define some terms in Λ representing diverse functions acting in
the natural numbers; however, as we can always get terms in Λ from typed
λ-terms, we will immediately define analogues to Church numerals in λ→
and work with them. The examples we will give in this system are very easy
to translate into Λ—just drop the types in the corresponding terms.

Definition 5.3.3 Let α ∈ T be a type variable in λ→. The type for Church

numerals over α in λ→ is Natα def
= (α→α)→(α→α). �

It is easy to see why Natα is defined in this way: the numeral cn represents
the operator that, given a function f and an argument x, iterates f n times
over x. Supposing x to be of type α, then f must be of type (α→α) and we
will obtain a term of type (α→α)→(α→α).

Definition 5.3.4 Let α ∈ T be a type variable in λ→. The Church numer-
als in λ→ are defined as follows: if n ∈ N, then cα

n = λf : (α→α)λx :α.fnx.
�

This numeral system shares all the good properties of the numeral system
for combinatory algebras introduced in Chapter 3; namely, cα

m = cα
n iff m = n,

and all numerals are solvable by (λx :α.x). Furthermore, all numerals are in
β-normal form.

Parameterized addition and multiplication (on α) are easy to define over
this number system.

Proposition 5.3.5 For every type variable α, there are terms ⊕α and ⊗α

such that:

i. � ⊕α,⊗α : Natα→Natα;

ii. for all n,m ∈ N, ⊕αcα
ncα

m →∗
β cα

n+m;

iii. for all n,m ∈ N, ⊗αcα
ncα

m →∗
β cα

n×m;
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Proof. Define

⊕α def
= λn,m :Natαλf : (α→α)λx :α.(nf(mfx))

and

⊗α def
= λn,m :Natαλf : (α→α).n(mf),

where λn,m :Natα.P stands for λn :Natα.λm :Natα.P .
We begin by proving that ⊕α has the required type. The proof is shown

in Figure 5.4.
Proving that ⊕αcα

ncα
m →∗

β cα
n+m is quite direct:

⊕αcα
ncα

m →∗
β

→∗
β λf : (α→α)λx :α.cα

nf(cα
mfx)

def
= λf : (α→α)λx :α.(λg : (α→α)λy :α.gny)f((λh : (α→α)λz :α.hmz)fx)

→∗
β λf : (α→α)λx :α.((λg : (α→α)λy :α.gny)f(fmx)

→∗
β λf : (α→α)λx :α.fn(fmx)

def
= λf : (α→α)λx :α.fn+mx

def
= cα

n+m

As for ⊗α, proving that it too has type Natα→Natα→Natα is also quite
simple:

���� � � � � ����
��

���� � �� � ����
��

���� � � � � �����
��

���� � � �� � �����
� �

��� ������ � � ����� � ����� � ���
� �

��� ����� � �� � ����������� � ����
� �

� ����� � �� ������� � ����������� � ���������
� �

� ���� ������� � ����������� � ��������������
� �

The proof that ⊗αcα
ncα

m →∗
β cα

n×m is by induction on n. First we simplify
⊗αcα

ncα
m:

⊗αcα
ncα

m →∗
β

→∗
β λf : (α→α).cα

n(cα
mf)

def
= λf : (α→α).(λg : (α→α)λy :α.gny)((λh : (α→α)λz :α.hmz)f)

→β λf : (α→α).(λg : (α→α)λy :α.gny)(λz :α.fmz)

→β λf : (α→α)λy :α.(λz :α.fmz)ny
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i. if n = 0, then the last term is simply λf : (α → α)λy : α.y, which by
definition is cα

0 ;

ii. for the induction step, we have that

λf : (α→α)λy :α.(λz :α.fmz)n+1y

def
= λf : (α→α)λy :α.(λz :α.fmz)((λz :α.fmz)ny)

→∗
β λf : (α→α)λy :α.(λz :α.fmz)((λz :α.fnmz)y)

→β λf : (α→α)λy :α.(λz :α.fmz)(fnmy)

→β λf : (α→α)λy :α.fm(fnmy)

def
= λf : (α→α)λy :α.fm(n+1)y

def
= cα

m(n+1)

which ends our proof. �

As an example, we will now present a term representing the function
f : N→N such that f(n) = n3 + 3n2 + 1 (problem 4 of [2]).

Example 5.3.6 For each type variable α the term Fα defined by

λn :Natα. ⊕α (⊕α(⊗α(⊗αnn)n)(⊗α(⊗αcα
3 n)n))cα

1

is such that � Fα : (Natα→Natα) and Fαcα
n →∗

β cα
n3+3n2+1. �

At this stage of affairs we will skip the proof of the properties we stated
for Fα, as they are direct consequences of the analogous properties for ⊕α

and ⊗α.

Generalizing numerals to other systems of the Lambda Cube proves to be
an interesting task. In λP there is not much that we can do; λω, however,
turns out to be quite interesting.

When we defined numerals in λ→, we did so for a type variable α. Looking
at this construction from the point of view of Pure Type Systems, this means
that all the properties we can prove regarding numerals can only be proven for
a context α :∗; furthermore, each type variable gives birth to an independent
numeral system, and it is not even clear what interaction between numerals
defined over different type variables should mean.

In λω, the construction is much more natural. This is the weakest system
in which we can build functions from types into types; as a consequence, it
is the first system where we can consider the type Nat∗—that is, the type of
the numerals over ∗.
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It is easy to see that, due to the existence of the product rule 〈�,�,�〉,
in this system we can build the types (∗→∗) and (∗→∗)→(∗→∗); it seems
quite natural, then, to define the numeral Cn as being λf : (∗→∗)λx :∗.fnx.
Notice that we can now define terms ⊕, ⊗ and F that act on these numerals in
the same way that ⊕α, ⊗α and Fα above did; the difference is that properties
about them can be proven from the empty context (problem 20 in [2]).

Obviously, in all systems containing λω the same construction is possible.

As for λ2, things also get interesting, though in a different way. Here,
we cannot define a “natural” numeral system as in λω, but we can also
define numerals independently of the type variable: we just use abstraction
and define cn as being λα : ∗.cα

n. The constructions given for λ→ have to
be somewhat adapted, but we can still define terms ⊕2, ⊗2 and F 2 with
properties analogous to their correspondent terms in λ→.

Besides, in λ2 we can canonically represent data types, therefore repro-
ducing more complex kinds of computation than that done just in the natural
numbers. The details of this representation can be found in [3].

In particular, we can define an operator that executes the recursion (prob-
lem 14.2 of [2]); that is, there is a term R such that

� R : (Πα :∗.[α→(Nat2→α→α)→Nat2→α])

and R satisfies

Rαabc0 →∗
β a

Rαabcn+1 →∗
β bcn(Rαabcn)
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Chapter 6

Conclusions

In this work we introduced λ-calculus as a model of computation and devel-
oped it in two directions, obtaining two other important models.

We defined combinatory algebras in Chapter 3, which generalize λ-calcu-
lus insofar as terms that are identified in Λ need not be the same in every
combinatory algebra, and showed how the constructions in [1] could be gener-
alized to arbitrary combinatory algebras. We then proved the corresponding
generalizations of known theorems of λ-calculus, namely showing that any
combinatory algebra can be viewed as a model of computation where the
numerals are well defined and every partial recursive function (defined ac-
cordingly to Kleene) can be represented in an uniform way.

Obviously, the possibility of representing computability in an arbitrary
combinatory algebra has some advantages over just doing it in λ-calculus;
namely, terms in Λ are subject to very strict formation rules, even if we
allow for a non-empty context. In an arbitrary combinatory algebra we can
simply postulate the existence of a new element and define the way it acts
(via the operation of the algebra) on other elements, thus adding expressive
power to the system. In this way we can, for example, introduce the concept
of oracle in a natural way: if D is a combinatory algebra, an element M ∈ D
represents the oracle ϕ :Nk→N iff, for every n1, . . . , nk ∈ N,

M�n1� . . . �nk� → �ϕ(n1, . . . , nk)�.

Other important (non-computable) functions can be introduced in a similar
way, and results in relative computability can be thus obtained.

On the other side, we tried to restrict λ-calculus in order to allow for
the use of different data types. The motivation for this comes, for example,
from programming languages where variables can be assigned types and we
want a function to be applied only to objects of a given type. This can be
done in a simple and intuitive way through typed λ-calculus, as we showed
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in 4.1, and in a more general setting through the use of Pure Type Systems.
Besides the computational aspects of the question, we explored a little of
the intrinsic relationship that the systems of the Lambda Cube share with
different known systems of logic, namely the result usually known as the
Propositions-as-Types interpretation (Theorem 4.3.2).

Pure Type Systems can be further strenghtened by adding the possibility
of recursive definitions and proofs; we didn’t pursue this study here, but it
is done in [4] in some detail.

Properties of these systems are illustrated in Chapter 5. We based our-
selves on the list of problems given in [2], which we previously solved, and
chose therefrom a selection broad enough to exemplify these properties and
explore some of the main differences between the systems. Some of the solu-
tions to these problems are already sketched in [3], but we developed them,
sometimes arriving at altogether different answers.
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represent, 14, 30
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