Computational Completeness of Combinatory Algebras

Luís Cruz-Filipe

June 1st, 2001

1. Introduction

2. Basic Definitions

3. Reduction

4. Representation

<u>Definition</u>: A *combinatory algebra* is a quadruple $\langle \mathcal{D}, \cdot, \mathbf{K}, \mathbf{S} \rangle$ satisfying:

- D is a set;
- $\cdot: \mathcal{D} \times \mathcal{D} \to \mathcal{D}$ is a binary operation;
- K,S are distinct elements of 2 such that
 - \blacksquare **K**xy=x
 - \blacksquare Sxyz=xz(yz)

The elements of \mathcal{D} are called combinators.

<u>Definition</u>: Let $\{x_1,...,x_n\}$ be a finite set of variables. The set of *terms* over $\{x_1,...,x_n\}$ is inductively defined as follows:

- x_i is a term over $\{x_1,...,x_n\}$, for every $1 \le i \le n$;
- A is a term over $\{x_1,...,x_n\}$, for every $A \in \mathcal{D}$;
- if t_1 and t_2 are terms over $\{x_1,...,x_n\}$, then so is t_1t_2 .

Generic terms over $\{x_1,...,x_n\}$ are denoted as $t(x_1,...,x_n)$.

<u>Definition</u>: The *contraction* in a combinatory algebra $\langle \mathcal{D}, \cdot, \mathbf{K}, \mathbf{S} \rangle$,

is the binary relation |= inductively defined by:

(Axiom)
$$T \models T$$
, for $T \in \mathcal{D}$,

- (*K*) $\mathbf{K}t_1t_2 \models t_1$, for all terms t_1 and t_2 ;
- (S) $\mathbf{S}t_1t_2t_3 \models t_1t_3(t_2t_3)$, for all terms t_1, t_2 and t_3 ;

(Congruence) If $t_1 \models t'_1$ and $t_2 \models t'_2$, then $t_1t_2 \models t'_1t'_2$.

The reflexive and transitive closure of \models is called *weak reduction* and denoted by \rightarrow .

Theorem: Let $\langle \mathcal{D}, \cdot, \mathbf{K}, \mathbf{S} \rangle$ be a combinatory algebra. For every term $t(x_1, ..., x_n)$ over $\{x_1, ..., x_n\}$ there is an element $T \in \mathcal{D}$ such that, for all $A_1, ..., A_n \in \mathcal{D}$,

$$TA_1...A_n = t(A_1,...,A_n),$$

where $t(A_1,...,A_n)$ is the result of uniformly substituting each x_i by the constant A_i in $t(x_1,...,x_n)$.

The element T is said to represent the term t.

<u>Definition</u>: Let $\langle \mathcal{D}, \cdot, \mathbf{K}, \mathbf{S} \rangle$ be a combinatory algebra. A combinatory equation in \mathcal{D} is an expression of the form

$$Tx_2...x_n=t(T,x_{-2},...,x_{-n}),$$

where $t(x_1,...,x_n)$ is a term over $\{x_1,...,x_n\}$.

Proposition: Every combinatory equation in a combinatory algebra has a solution; that is, if $Tx_2...x_n=t(T,x_{-2},...,x_{-n})$ is a combinatory equation, then there is an element $T \in \mathcal{D}$ such that, for every $A_2,...,A_n \in \mathcal{D}$,

$$TA_2...A_n = t(T, A_2, ..., A_n).$$

Furthermore,

$$TA_2...A_n \Rightarrow t(T,A_2,...,A_n).$$

<u>Definition</u>: An element T is said to be *solvable* iff there are $k \in \mathbb{N}$ and elements $N_1, ..., N_k \in \mathcal{D}$ such that $TN_1...N_k = I$.

<u>Definition</u>: Let k>0 and $f: \mathbb{N}^k \to \mathbb{N}$ be a partial function. The combinator F is said to *represent* f iff the following two conditions are satisfied:

- if $f(n_1,...,n_k) \downarrow$, then $F \lceil n_1 \rceil ... \lceil n_k \rceil \rightarrow \lceil f(n_1,...,n_k) \rceil$;
- if $f(n_1,...,n_k) \uparrow$, then $F \lceil n_1 \rceil ... \lceil n_k \rceil$ is not solvable.

References:

- Barendregt, H. P., *The Lambda Calculus*, Elsevier Science Publishers B. V., 1984
- Engeler, E., Foundations of Mathematics, Springer-Verlag, 1993