Formalizing Mathematics in Coq

Luis Cruz-Filipe

University of Nijmegen

Centro de Logica e Computacao

January 4, 2002

Overview

. Introduction

. Formalizing Mathematics: How and Why

. Proof Assistants—Underlying Theory

. Coq: Specific Characteristics

. Towards a Formalization of Real Analysis

. Conclusions & Future Work

Formalizing Mathematics
Why?
e Higher reliability for proofs
e Potential auxiliary tool in investigation

e Applications

How?

e Proof Assistants (Coqg) which interactively generate proofs which
are easy to check and perform computations.

Typed A-calculus: terms and types.
e V is a set of type variables

e {x;|i € N} is a countable set of term variables

T
A

V|T—T
x; |)\xiZT./\ | AN

M : A means that the term M has type A.

A context I is a set of judgements of the form M : A.

Types of terms are inductively defined:

o ifM:Acl thenlT'FM: A

o ifMz:A-M:BthenTTHF(MAx:AM): A— B

e ifTFM:A—BandT-N:Athen T+ (MN) : B

A is said to be inhabited iff there exists some M such that+ M : A

Let A, B and C be type variables and define

S
K

M (A—-B—C)\y:A—BMXz:Axz(yz)
Ax: ANy B.x

Then:

F K:A—->B—A
F S:(A—-B—-C)—(A—B)—A—=C

Viewing type variables as propositional variables and — as (intuition-
istic) implication, we have that:

e the rules for typing correspond exactly to the natural deduction
rules for implication introduction and elimination in the implicative
fragment of intuitionistic propositional logic

e the types of K and S correspond to intuitionistic tautologies

We have both correction and completeness.

Pure Type Systems

A Pure Type System (PTS) is a triple (S, A,R) where:

e S is a set

The elements of § are called sorts, the elements of A are called axioms
and the elements of R are called rules. We will usually represent an
axiom (xz, A) by x: A and abbreviate rules of the form (s1,sp,s2) to
(s1,52)-

Type assignment rules for PTS:

(sort) - s1:89 s1:890€ A
[A:s
(var) x &I
[Lx:AFx: A
[F A:s r=M:C
(weak) x &I

L x:AF-M:C

[A:sq [,x:AF B:so
(product) (s1,82,83) €E R
[FMNx:A.B: s3

[L,x:A+-M:B [(FTx:A.B:s

(abstraction)
X AM :lMNx:A.B

Fr-M:Mx:A.B - N:B
(application)

'+ MN:B[N/z]

Fr-M:A [- B:s
(conversion) A=pB
= M:B

Important properties of PTS are:
Thinning: frCr'andr-M:Athenl"’+-M:A

Substitution: if M, z:B,To-FM:Aand {1 F N:B thenl 1,5 [N/:U] -
M [N/z] : A[N/z]

Strengthening: if M, z: B, - M : A and z &€ FV([>,M,A) then
|_1, |_2 FM:A

Reduction: if T M: A and M—%N then T N:A

A PTS such that A and R are functions is called functional. Func-
tional PTS enjoy the following property:

Uniqueness: if Fr'FM:Aand ' M:B then A =3 B

A morphism between two PTS (S, A, R) and (S’ A", R") is a function
f: 8 — 8 such that f(A) C A" and f(R) C R

Morphisms preserve B-reduction, the diamond property and strong
normalization.

({*}, {x:x},{(x,*,%)}) iS @ terminal object in the category of all PTS.

An important class of PTS are those where we just have two sorts x
and [and the single axiom x : 1. By combining these sorts in all pos-
sible ways to generate rules of the form (s, so,sp) we get eight PTS
generally known as the Lambda Cube, which are usually presented in
the following graphical way:

Aw APw
A
A2 ‘ NP2
Aw | ANPw

Inductive types and (-reduction

Inductive u: s :=

constry : a%(u) — .. 0%11(“) — I

iconstry, @ oy () = ... = oy, (1) = 1

where each a;-(u) is of the form A; — A, with g not occurring in
Aq,..., A, and either X is p or u does not occur in X.

Inductive types come with induction and recursion principles.

Inductive nat : Type .=

O : nat
|S : nat — nat

[-A:Type ITHFf1:A T F fonat—-A—A

elimq
[- ReCpatfi1fo i nat— A

'+ P:nat—Prop 'k f1:PO T F fo:MNz:nat.Px— P(Sx)

elimo
[- ReCphatfi1fo : MNx:nat.Px

ReCnatf1/20 —. fi
ReCnat f1/2(St) —. fot(ReCpatf1fot)

T he Calculus of Inductive Constructions

{Set, Prop, Type(i)|i € N}

= {Set:Type(0),Prop: Type(0), Type(i): Type(i + 1)|i € N}
{(s1,s2)|s1 € {Set, Prop} or s; € {Set, Prop}}
({(s1,52,53)|s; := Type(n;),n1 < nz and ny < nz}

J X O
|l

e NO m-reduction

e restrictions to elimination over inductive types (due to consistency
problems)

In Coq:

o \z:A.B is written as [x:A]B

o MNx:A.B is written as (x:A)B

e Type(7) is written simply as Type

e J-reduction

e special inductive type: Record

Implementation options

Constructive mathematics

n-reduction vs. setoids

Coercions

Set-based logic

My work

Goals: Formalization of main concepts and results of Calculus in one
real variable:

e Taylor's Theorem

e Derivation rules

e Fundamental Theorem of Calculus

Environment: Work previously done in order to prove the Funda-
mental Theorem of Algebra, which already included:

e A construction of the reals as a complete ordered field satisfying
the Archimedean axiom

e Formalized definitions of most common operations and construc-
tions on the real numbers (algebraic operations, absolute value,
maximum, Cauchy sequences, limit)

e Formalized proofs of the main properties of these operations

e Formalized notions of real valued (total) functions and pointwise
continuity

Problems:

e NO obvious concept of partial function

e Definitions depending on proofs

e Classical definitions won't work

e Little automation

e Need of “unfolding” lemmas

Example: from Rolle’'s Theorem to the Mean
Law

(a,b:IR; f:(CSetoid_fun (subset (compact a b)) IR);
diffF:(diffble_I a b f))
(f A) [=] (f B)
->(e:IR) (Zero[<]e)
->{x: (subset (compact a b))
& ((AbsIR
(projSi ?7 diffF x)) [<=] e)}

— can only be applied to the exact elimination of the existential
quantifier

Generalization:

(a,b:IR; f,h:(CSetoid_fun (subset (compact a b)) IR))
(f A) [=] (£ B)
->(derivative_I a b f h)
->(e:IR)
(Zerol[<]e)
->{x: (subset (compact a b)) & ((AbsIR (h x)) [<=] e)}

We now want to prove the Mean Law:

Variables a,b:IR.
Local I:=(compact a b).

Local A,B.

Variable f:(CSetoid_fun (subset I) IR).
Hypothesis diffF:(diffble_I 77 f).
Local f’:=(projS1 77 diffF).

Lemma Mean_Law : (e:IR) (Zero[<]le)-> {x:(subset I) &
(AbsIR ((f B)[-1(f M) [-1(Ef’ x)[*x](b[-]a)) [<=]el}.

Technique: define a function A : [a,b] — R such that

h(z) = (z —a)(f(®) — f(a)) — f(z)(b—a)

and apply Rolle’s Theorem.

How much of this proof can be done automatically?

e prove that h(a) = h(b)

e compute A'(x)

e prove that h/(z) = f(b) — f(a) — f'(z)(b —a)

Reflection Tactics: Rational and New_Deriv

Motivation: work syntactically.
Rational: prove that two elements of an arbitrary field are equal.

New_Deriv: prove that one function f’ is the derivative of another
function f.

The New_Deriv Tactic

Inductive type RF of “restricted functions’:
e constant and identity functions are in RF;
e differentiable functions are in RF

e synctatical expressions built up from restricted functions using -+,
— and *x are in RF

— There is a trivial mapping [-] from RF into the class of functions
from [a,b] to R.

— In RF we can inductively define a syntactical derivative function
"satisfying [f'] = [f].

Goal: an expression of the form (derivative_I a b f f’).
Arguments: none.

Steps:

1. Determine an r such that [r] = f and substitute [r]] for f in the
goal

2. Calculate »/

3. Check that ['] = f/

Tactic Definition New_Deriv :=
Match Context With
[I-(derivative_I 71 72 7?3 74)] -> Let r=(ifunct_to_restr 73) In
Apply derivative_wdl with (restr_to_ifunct a b r); [
Intro; Simpl; Algebra
| Apply derivative_wdr with (restr_deriv a b r); [
Intro; Simpl; Try Rational
| Apply deriv_restr]].

Drawbacks:

e the equality proofs are not guaranteed to succeed; in this case,
subgoals are left for the user to prove

Future Work

Generalizing Rolle’s and Taylor's Theorems to arbitrary partial
functions

Optimizing the tactics for automatic differentiation

Theory of Integration

Fundamental Theorem of Calculus

