
Formalizing Mathemati
s in Coq

Lu��s Cruz-Filipe

University of NijmegenCentro de L�ogi
a e Computa�
~ao

January 4, 2002

Overview

1. Introdu
tion2. Formalizing Mathemati
s: How and Why3. Proof Assistants|Underlying Theory4. Coq: Spe
i�
 Chara
teristi
s5. Towards a Formalization of Real Analysis6. Con
lusions & Future Work

Formalizing Mathemati
sWhy?� Higher reliability for proofs� Potential auxiliary tool in investigation� Appli
ations

How?� Proof Assistants (Coq) whi
h intera
tively generate proofs whi
hare easy to
he
k and perform
omputations.

Typed �-
al
ulus: terms and types.

� V is a set of type variables

� fxiji 2 N g is a
ountable set of term variables

T := V j T ! T� := xi j �xi : T :� j ��

M : A means that the term M has type A.A
ontext � is a set of judgements of the form M : A.

Types of terms are indu
tively de�ned:

� if M : A 2 � then � `M : A

� if �; x : A `M : B then � ` (�x : A:M) : A! B

� if � `M : A! B and � ` N : A then � ` (MN) : B

A is said to be inhabited i� there exists some M su
h that `M : A

Let A, B and C be type variables and de�neS := �x :(A!B!C):�y :A!B:�z :A:xz(yz)K := �x :A:�y :B:x

Then: ` K : A!B!A` S : (A!B!C)!(A!B)!A!C

Viewing type variables as propositional variables and ! as (intuition-isti
) impli
ation, we have that:

� the rules for typing
orrespond exa
tly to the natural dedu
tionrules for impli
ation introdu
tion and elimination in the impli
ativefragment of intuitionisti
 propositional logi

� the types of K and S
orrespond to intuitionisti
 tautologies

We have both
orre
tion and
ompleteness.

Pure Type SystemsA Pure Type System (PTS) is a triple hS;A;Ri where:� S is a set� A � S2� R � S3The elements of S are
alled sorts, the elements of A are
alled axiomsand the elements of R are
alled rules. We will usually represent anaxiom hx;Ai by x : A and abbreviate rules of the form hs1; s2; s2i tohs1; s2i.

Type assignment rules for PTS:

(sort) ` s1 :s2 s1 :s2 2 A

(var) � ` A :s�; x :A ` x :A x 62 �

(weak) � ` A :s � `M :C�; x :A `M :C x 62 �

(produ
t) � ` A :s1 �; x :A ` B :s2� ` �x :A:B : s3 hs1; s2; s3i 2 R

(abstra
tion) �; x :A `M :B � ` �x :A:B : s� ` �x :A:M : �x :A:B

(appli
ation) � `M :�x :A:B � ` N :B� `MN :B [N=x℄

(
onversion) � `M :A � ` B :s� `M :B A=R B

Important properties of PTS are:

Thinning: if � � �0 and � `M :A then �0 `M :A

Substitution: if �1; x :B;�2 `M :A and �1 ` N :B then �1;�2 [N=x℄ `M [N=x℄ : A [N=x℄

Strengthening: if �1; x : B;�2 ` M : A and x 62 FV (�2;M;A) then�1;�2 `M :A

Redu
tion: if � `M :A and M !�� N then � ` N :A

A PTS su
h that A and R are fun
tions is
alled fun
tional. Fun
-tional PTS enjoy the following property:

Uniqueness: if � `M :A and � `M :B then A=� B

A morphism between two PTS hS;A;Ri and hS 0;A0;R0i is a fun
tionf : S ! S 0 su
h that f(A) � A0 and f(R) � R0.Morphisms preserve �-redu
tion, the diamond property and strongnormalization.hf�g; f� :�g; fh�; �; �igi is a terminal obje
t in the
ategory of all PTS.

An important
lass of PTS are those where we just have two sorts �and � and the single axiom � : �. By
ombining these sorts in all pos-sible ways to generate rules of the form hs1; s2; s2i we get eight PTSgenerally known as the Lambda Cube, whi
h are usually presented inthe following graphi
al way:
�! //�P!�2 ;;

w
w

w
w

w
w

w
w

w

//�P2 99
s

s
s

s
s

s
s

s
s

s

�! //

OO

�P!

OO

�! ;;
x

x
x

x
x

x
x

x

//

OO

�P 99
s

s
s

s
s

s
s

s
s

OO

Indu
tive types and �-redu
tionIndu
tive � : s :=
onstr1 : �11(�)! : : :! �1m1(�)! �...j
onstrn : �n1(�)! : : :! �nmn(�)! �where ea
h �ij(�) is of the form A1 ! Ak with � not o

urring inA1; : : : ; Ak and either X is � or � does not o

ur in X.Indu
tive types
ome with indu
tion and re
ursion prin
iples.

Indu
tive nat : Type := 0 : natjS : nat! nat� ` A :Type � ` f1 :A � ` f2 :nat!A!A elim1� ` Re
natf1f2 : nat!A� ` P :nat!Prop � ` f1 :P0 � ` f2 : �x :nat:Px!P(Sx) elim2� ` Re
natf1f2 : �x :nat:Px

Re
natf1f20 !� f1Re
natf1f2(St) !� f2t(Re
natf1f2t)

The Cal
ulus of Indu
tive Constru
tions

S = fSet;Prop;Type(i)ji 2 N gA = fSet :Type(0);Prop :Type(0);Type(i):Type(i+1)ji 2 N gR = fhs1; s2ijs1 2 fSet;Propg or s1 2 fSet;Propgg[fhs1; s2; s3ijsi := Type(ni); n1 � n3 and n2 � n3g

� no �-redu
tion

� restri
tions to elimination over indu
tive types (due to
onsisten
yproblems)

In Coq:
� �x :A:B is written as [x:A℄B

� �x :A:B is written as (x:A)B

� Type(i) is written simply as Type

� Æ-redu
tion
� spe
ial indu
tive type: Re
ord

Implementation options

� Constru
tive mathemati
s

� �-redu
tion vs. setoids

� Coer
ions
� Set-based logi

My workGoals: Formalization of main
on
epts and results of Cal
ulus in onereal variable:
� Taylor's Theorem

� Derivation rules

� Fundamental Theorem of Cal
ulus

Environment: Work previously done in order to prove the Funda-mental Theorem of Algebra, whi
h already in
luded:� A
onstru
tion of the reals as a
omplete ordered �eld satisfyingthe Ar
himedean axiom� Formalized de�nitions of most
ommon operations and
onstru
-tions on the real numbers (algebrai
 operations, absolute value,maximum, Cau
hy sequen
es, limit)� Formalized proofs of the main properties of these operations� Formalized notions of real valued (total) fun
tions and pointwise
ontinuity

Problems:
� No obvious
on
ept of partial fun
tion

� De�nitions depending on proofs

� Classi
al de�nitions won't work

� Little automation

� Need of \unfolding" lemmas

Example: from Rolle's Theorem to the MeanLaw

(a,b:IR; f:(CSetoid_fun (subset (
ompa
t a b)) IR);diffF:(diffble_I a b f))(f A) [=℄ (f B)->(e:IR)(Zero[<℄e)->{x:(subset (
ompa
t a b))& ((AbsIR(projS1 ?? diffF x)) [<=℄ e)}!
an only be applied to the exa
t elimination of the existentialquanti�er

Generalization:(a,b:IR; f,h:(CSetoid_fun (subset (
ompa
t a b)) IR))(f A) [=℄ (f B)->(derivative_I a b f h)->(e:IR)(Zero[<℄e)->{x:(subset (
ompa
t a b)) & ((AbsIR (h x)) [<=℄ e)}

We now want to prove the Mean Law:Variables a,b:IR.Lo
al I:=(
ompa
t a b).Lo
al A,B.Variable f:(CSetoid_fun (subset I) IR).Hypothesis diffF:(diffble_I ?? f).Lo
al f':=(projS1 ?? diffF).Lemma Mean_Law : (e:IR)(Zero[<℄e)-> {x:(subset I) &(AbsIR ((f B)[-℄(f A))[-℄(f' x)[*℄(b[-℄a))[<=℄e}.

Te
hnique: de�ne a fun
tion h : [a; b℄! R su
h thath(x) = (x� a)(f(b)� f(a))� f(x)(b� a)and apply Rolle's Theorem.How mu
h of this proof
an be done automati
ally?

� prove that h(a) = h(b)

�
ompute h0(x)

� prove that h0(x) = f(b)� f(a)� f 0(x)(b� a)

Re
e
tion Ta
ti
s: Rational and New_DerivMotivation: work synta
ti
ally.Rational: prove that two elements of an arbitrary �eld are equal.New_Deriv: prove that one fun
tion f 0 is the derivative of anotherfun
tion f .

The New_Deriv Ta
ti
Indu
tive type RF of \restri
ted fun
tions":�
onstant and identity fun
tions are in RF;� di�erentiable fun
tions are in RF� syn
tati
al expressions built up from restri
ted fun
tions using +,� and � are in RF

! There is a trivial mapping [[�℄℄ from RF into the
lass of fun
tionsfrom [a; b℄ to R .! In RF we
an indu
tively de�ne a synta
ti
al derivative fun
tion0 satisfying [[f 0℄℄ = [[f ℄℄0.

Goal: an expression of the form (derivative_I a b f f').Arguments: none.Steps:1. Determine an r su
h that [[r℄℄ = f and substitute [[r℄℄ for f in thegoal2. Cal
ulate r03. Che
k that [[r0℄℄ = f 0

Ta
ti
 Definition New_Deriv :=Mat
h Context With[|-(derivative_I ?1 ?2 ?3 ?4)℄ -> Let r=(ifun
t_to_restr ?3) InApply derivative_wdl with (restr_to_ifun
t a b r); [Intro; Simpl; Algebra| Apply derivative_wdr with (restr_deriv a b r); [Intro; Simpl; Try Rational| Apply deriv_restr℄℄.Drawba
ks:
� the equality proofs are not guaranteed to su

eed; in this
ase,subgoals are left for the user to prove

Future Work

� Generalizing Rolle's and Taylor's Theorems to arbitrary partialfun
tions
� Optimizing the ta
ti
s for automati
 di�erentiation

� Theory of Integration

� Fundamental Theorem of Cal
ulus

