C-CoRN: The Constructive Coq Repository @ Nijmegen

Luís Cruz-Filipe

Days in Logic January 22, 2004

University of Nijmegen, The Netherlands Centro de Lógica e Computação, Portugal

From 1.9.2004 the University of Nijmegen will be called Radboud University of Nijmegen

The Constructive Coq Repository @ Nijmegen

1. Overview of CoRN and C-CoRN

2. History

3. Features

4. Some Examples

5. Future Directions

The Constructive Coq Repository @ Nijmegen

What?

A library of constructive mathematics formalized in Coq

Where?

Repository: University of Nijmegen (NL)

Users: (some day) all over the world...

Why?

Formalize mathematics in a systematic way

Analyze the process of formalizing mathematics

History

- The FTA project [1999-2001]
 - Algebraic Hierarchy
 - Real and complex numbers, polynomials
- Real Analysis [2001-2002]
 - Partial Functions, differentiation, integration
 - Power series, transcendental functions
- C-CoRN [2002-]
 - Metric spaces, complex exponential
 - Group theory, Lagrange's Theorem
 - Models and counter-examples

Methodology

Aim at generality

• Constructive reasoning, compatible with classical axioms

• Two-sorted logic

• Applications: algebraic reasoning, program extraction

Organization

- Internal coherence
 - structured according to subject
 - syntax conventions
- Visibility
 - documentation vs. presentation...
 - focus on mathematical and metaformalization issues

Examples

• from the library:

algebra :
$$\forall_{f:R[\mathbb{C}]}.(\text{nonConstant }f) \Rightarrow \exists_{z:\mathbb{C}}.f(z) = 0$$

trigonometry :
$$\forall_{x:\mathbb{R}} \cdot \cos(x)^2 + \sin(x)^2 = 1$$

complex numbers :
$$e^{i\pi} + 1 = 0$$

Examples (cont.)

• program extraction: computed values of constants

approximation	value of e	value of $\sqrt{2}$
0	$\frac{0}{1} = 0$	$\frac{0}{1} = 0$
1	$\frac{1}{1} = 1$	$\frac{3}{3} = 1$
2	$\frac{2}{1} = 2$	$\frac{3}{3} = 1$
5	$\frac{65}{24} \approx 2.70833$	$\frac{35}{27} \approx 1.2963$
10	$\frac{98641}{36288} \approx 2.71828$	$\frac{27755}{19683} \approx 1.4101$

The Future

- More users
- More topics
 - complex analysis
 - number theory
- More applications