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use of logic to describe behaviour of systems

different systems ←→ different logics
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Two simple examples (I)

The behaviour of system A is described by linear temporal logic
with (state) propositional variables p and q.

The behaviour of system B is described by linear temporal logic
with a (state) propositional variable r .

Under reasonable assumptions, the joint system can be described
by linear temporal logic with state variables p, q and r .
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Two simple examples (II)

Epistemological logics (dealing with knowledge) typically include
an S5 modality K .

Deontic logics (reasoning about obligation) use a D modality O.

Reasoning about Law requires the combination of these two logics,
where one wants to write formulas mixing both modal operators.

¬KO(ϕ) ∧ O(ϕ) ∧ ¬ϕ→ (goto-jail)
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Other generic examples

parameterization of logics;

union of logics;

fusion of modal logics.
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Fibring

more generally applicable;

fewer restrictions on language.

Key results: preservation of properties

syntactical: decidability, complexity

semantical: finite model property, cardinality results, decidability

mixed: soundness, completeness
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Drawbacks

Propositional vs First-Order

usually very hard
but useful!
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An important distinction

Homogeneous fibring deals with combining two logics
presented/defined in a similar way, e.g.:

two Hilbert calculi;

two sequent calculi;

two logics given by semantics.

Heterogeneous fibring attempts to combine two logics
presented/defined by different means, e.g.:

a Hilbert calculus and a sequent calculus;

a sequent calculus and a modal logic characterized by some
class of Kripke structures.

Heterogeneous fibring is a much harder problem that has only
recently been addressed.
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Remark: signatures

Throughout we will only consider logics with a propositional basis.

Definition

A propositional signature is a family C = {Ck}k∈N of sets. Each
ck ∈ Ck is called a constructor or connective of arity k.

The language L(C ) is the free algebra over C generated by a
countable set Ξ = {ξn : n ∈ N} of meta-variables.

The elements of L(C ,Ξ) are called formulas.

We say that C ⊆ C ′ if Ck ⊆ C ′
k for every k ∈ N.

L. Cruz-Filipe, C. Sernadas The Essence of Proofs in Sequent Calculi



Overview of fibring
Sequent calculi given by rules

Sequent calculi given by derivations
Preservation results

Conclusions & future work

Motivation
Examples
Fibring

Remark: signatures

Throughout we will only consider logics with a propositional basis.

Definition

A propositional signature is a family C = {Ck}k∈N of sets. Each
ck ∈ Ck is called a constructor or connective of arity k.

The language L(C ) is the free algebra over C generated by a
countable set Ξ = {ξn : n ∈ N} of meta-variables.

The elements of L(C ,Ξ) are called formulas.

We say that C ⊆ C ′ if Ck ⊆ C ′
k for every k ∈ N.

L. Cruz-Filipe, C. Sernadas The Essence of Proofs in Sequent Calculi



Overview of fibring
Sequent calculi given by rules

Sequent calculi given by derivations
Preservation results

Conclusions & future work

Definitions
Examples
Fibring

Definition

A sequent is a pair Γ −→ ∆, where Γ,∆ are multisets over L(C )

A rule is a pair θ1,...,θn

γ where θ1, . . . , θn, γ are sequents.

Definition

A sequent calculus (given by rules) is a pair R = 〈C ,R〉, where C
is a signature and R is a set of rules including structural rules and
specific rules (for the connectives).
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Structural rules

These are chosen among the following.

ξ1,∆1 −→ ∆2 ∆1 −→ ∆2, ξ1

∆1 −→ ∆2
Cut

∆1 −→ ∆2

ξ1,∆1 −→ ∆2
LW

∆1 −→ ∆2

∆1 −→ ∆2, ξ1
RW

∆1, ξ1, ξ1 −→ ∆2

∆1, ξ1 −→ ∆2
LC

∆1 −→ ξ1, ξ1,∆2

∆1 −→ ξ1,∆2
RC
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Structural rules

These are chosen among the following.
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Rules for the connectives

These may include:

Left rules: the antecedent of the conclusion includes a formula
c(ϕ1, . . . , ϕn) for some n-ary connective c .

Right rules: the consequent of the conclusion includes a
formula c(ϕ1, . . . , ϕn) for some n-ary connective c .
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Derivations

Definition

A (rule-)derivation of a sequent s from a set of sequents Θ in
sequent calculus R is a finite sequence {Γi −→ ∆i}ni=1 of sequents
such that:

Γ1 −→ ∆1 is s;

for each i = 1, . . . , n, one of the following holds:

Γi ∩∆i 6= ∅ (justified by Ax);
Γi −→ ∆i ∈ Θ (justified by Hyp);
for some rule r = 〈{θ1, . . . , θk}, γ〉 and substitution σ,
Γi −→ ∆i = σ(γ) and σ(θj) ∈ {Γk −→ ∆k}nk=i+1 (justified by
r , i1, . . . , ik).

Notation: ∆ `R s or (when ∆ is empty) `R s.

L. Cruz-Filipe, C. Sernadas The Essence of Proofs in Sequent Calculi



Overview of fibring
Sequent calculi given by rules

Sequent calculi given by derivations
Preservation results

Conclusions & future work

Definitions
Examples
Fibring

Derivations

Definition

A (rule-)derivation of a sequent s from a set of sequents Θ in
sequent calculus R is a finite sequence {Γi −→ ∆i}ni=1 of sequents
such that:

Γ1 −→ ∆1 is s;

for each i = 1, . . . , n, one of the following holds:

Γi ∩∆i 6= ∅ (justified by Ax);
Γi −→ ∆i ∈ Θ (justified by Hyp);
for some rule r = 〈{θ1, . . . , θk}, γ〉 and substitution σ,
Γi −→ ∆i = σ(γ) and σ(θj) ∈ {Γk −→ ∆k}nk=i+1 (justified by
r , i1, . . . , ik).

Notation: ∆ `R s or (when ∆ is empty) `R s.

L. Cruz-Filipe, C. Sernadas The Essence of Proofs in Sequent Calculi



Overview of fibring
Sequent calculi given by rules

Sequent calculi given by derivations
Preservation results

Conclusions & future work

Definitions
Examples
Fibring

Derivations

Definition

A (rule-)derivation of a sequent s from a set of sequents Θ in
sequent calculus R is a finite sequence {Γi −→ ∆i}ni=1 of sequents
such that:

Γ1 −→ ∆1 is s;

for each i = 1, . . . , n, one of the following holds:

Γi ∩∆i 6= ∅ (justified by Ax);
Γi −→ ∆i ∈ Θ (justified by Hyp);
for some rule r = 〈{θ1, . . . , θk}, γ〉 and substitution σ,
Γi −→ ∆i = σ(γ) and σ(θj) ∈ {Γk −→ ∆k}nk=i+1 (justified by
r , i1, . . . , ik).

Notation: ∆ `R s or (when ∆ is empty) `R s.

L. Cruz-Filipe, C. Sernadas The Essence of Proofs in Sequent Calculi



Overview of fibring
Sequent calculi given by rules

Sequent calculi given by derivations
Preservation results

Conclusions & future work

Definitions
Examples
Fibring

Derivations

Definition

A (rule-)derivation of a sequent s from a set of sequents Θ in
sequent calculus R is a finite sequence {Γi −→ ∆i}ni=1 of sequents
such that:

Γ1 −→ ∆1 is s;

for each i = 1, . . . , n, one of the following holds:

Γi ∩∆i 6= ∅ (justified by Ax);
Γi −→ ∆i ∈ Θ (justified by Hyp);
for some rule r = 〈{θ1, . . . , θk}, γ〉 and substitution σ,
Γi −→ ∆i = σ(γ) and σ(θj) ∈ {Γk −→ ∆k}nk=i+1 (justified by
r , i1, . . . , ik).

Notation: ∆ `R s or (when ∆ is empty) `R s.

L. Cruz-Filipe, C. Sernadas The Essence of Proofs in Sequent Calculi



Overview of fibring
Sequent calculi given by rules

Sequent calculi given by derivations
Preservation results

Conclusions & future work

Definitions
Examples
Fibring

Derivations

Definition

A (rule-)derivation of a sequent s from a set of sequents Θ in
sequent calculus R is a finite sequence {Γi −→ ∆i}ni=1 of sequents
such that:

Γ1 −→ ∆1 is s;

for each i = 1, . . . , n, one of the following holds:

Γi ∩∆i 6= ∅ (justified by Ax);
Γi −→ ∆i ∈ Θ (justified by Hyp);
for some rule r = 〈{θ1, . . . , θk}, γ〉 and substitution σ,
Γi −→ ∆i = σ(γ) and σ(θj) ∈ {Γk −→ ∆k}nk=i+1 (justified by
r , i1, . . . , ik).

Notation: ∆ `R s or (when ∆ is empty) `R s.

L. Cruz-Filipe, C. Sernadas The Essence of Proofs in Sequent Calculi



Overview of fibring
Sequent calculi given by rules

Sequent calculi given by derivations
Preservation results

Conclusions & future work

Definitions
Examples
Fibring

Derivations

Definition

A (rule-)derivation of a sequent s from a set of sequents Θ in
sequent calculus R is a finite sequence {Γi −→ ∆i}ni=1 of sequents
such that:

Γ1 −→ ∆1 is s;

for each i = 1, . . . , n, one of the following holds:

Γi ∩∆i 6= ∅ (justified by Ax);
Γi −→ ∆i ∈ Θ (justified by Hyp);
for some rule r = 〈{θ1, . . . , θk}, γ〉 and substitution σ,
Γi −→ ∆i = σ(γ) and σ(θj) ∈ {Γk −→ ∆k}nk=i+1 (justified by
r , i1, . . . , ik).

Notation: ∆ `R s or (when ∆ is empty) `R s.

L. Cruz-Filipe, C. Sernadas The Essence of Proofs in Sequent Calculi



Overview of fibring
Sequent calculi given by rules

Sequent calculi given by derivations
Preservation results

Conclusions & future work

Definitions
Examples
Fibring

Derivations

Definition

A (rule-)derivation of a sequent s from a set of sequents Θ in
sequent calculus R is a finite sequence {Γi −→ ∆i}ni=1 of sequents
such that:

Γ1 −→ ∆1 is s;

for each i = 1, . . . , n, one of the following holds:

Γi ∩∆i 6= ∅ (justified by Ax);
Γi −→ ∆i ∈ Θ (justified by Hyp);
for some rule r = 〈{θ1, . . . , θk}, γ〉 and substitution σ,
Γi −→ ∆i = σ(γ) and σ(θj) ∈ {Γk −→ ∆k}nk=i+1 (justified by
r , i1, . . . , ik).

Notation: ∆ `R s or (when ∆ is empty) `R s.

L. Cruz-Filipe, C. Sernadas The Essence of Proofs in Sequent Calculi



Overview of fibring
Sequent calculi given by rules

Sequent calculi given by derivations
Preservation results

Conclusions & future work

Definitions
Examples
Fibring

Derivations

Definition

A (rule-)derivation of a sequent s from a set of sequents Θ in
sequent calculus R is a finite sequence {Γi −→ ∆i}ni=1 of sequents
such that:

Γ1 −→ ∆1 is s;

for each i = 1, . . . , n, one of the following holds:

Γi ∩∆i 6= ∅ (justified by Ax);
Γi −→ ∆i ∈ Θ (justified by Hyp);
for some rule r = 〈{θ1, . . . , θk}, γ〉 and substitution σ,
Γi −→ ∆i = σ(γ) and σ(θj) ∈ {Γk −→ ∆k}nk=i+1 (justified by
r , i1, . . . , ik).

Notation: ∆ `R s or (when ∆ is empty) `R s.

L. Cruz-Filipe, C. Sernadas The Essence of Proofs in Sequent Calculi



Overview of fibring
Sequent calculi given by rules

Sequent calculi given by derivations
Preservation results

Conclusions & future work

Definitions
Examples
Fibring

Example: S4

All structural rules plus:

Γ −→ ∆, ξ1 ξ2, Γ −→ ∆

(ξ1 → ξ2), Γ −→ ∆
L→ ξ1, Γ −→ ∆, ξ2

Γ −→ ∆, (ξ1 → ξ2)
R→

ξ1, Γ1 −→ ♦(∆1)

(♦ξ1),�(Γ1), Γ2 −→ ∆2,♦(∆1)
L♦

Γ, ξ1, (�ξ1) −→ ∆

Γ, (�ξ1) −→ ∆
L�

�Γ1 −→ ξ1,∆1

Γ2,�(Γ1) −→ (�ξ1),♦(∆1),∆2
R�

Γ −→ ∆, ξ1, (♦ξ1)

Γ −→ ∆, (♦ξ1)
R♦

where �(Γ) = {(�ϕ) : ϕ ∈ Γ} and ♦(Γ) = {(♦ϕ) : ϕ ∈ Γ}
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Derivation in S4

Example

The following shows that `S4−→ (♦(ξ1 → (�ξ1))).

1. −→ (♦(ξ1 → (�ξ1))) R♦, 2
2. −→ (♦(ξ1 → (�ξ1))), (ξ1 → (�ξ1)) R→, 3
3. ξ1 −→ (♦(ξ1 → (�ξ1))), (�ξ1) R�, 4
4. −→ (♦(ξ1 → (�ξ1))), ξ1 R♦, 5
5. −→ (♦(ξ1 → (�ξ1))), (ξ1 → (�ξ1)), ξ1 R→, 6
6. ξ1 −→ (♦(ξ1 → (�ξ1))), (�ξ1), ξ1 Ax
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Example: D

All structural rules plus:

Γ −→ ∆, ξ1 ξ2, Γ −→ ∆

(ξ1 → ξ2), Γ −→ ∆
L→ ξ1, Γ −→ ∆, ξ2

Γ −→ ∆, (ξ1 → ξ2)
R→

Γ −→ ∆, ξ1

Γ, (¬ξ1) −→ ∆
L¬ Γ, ξ1 −→ ∆

Γ −→ (¬ξ1),∆
R¬

Γ −→ ξ1

�(Γ) −→ (�ξ1)
R�

Γ −→ ξ1

�(Γ) −→ (♦ξ1)
R♦
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Definitions
Examples
Fibring

Derivation in D

Example

The following shows that −→ ξ2 `D−→ (♦(ξ1 → ξ2))

1. −→ (♦(ξ1 → ξ2)) Cut, 2, 5
2. (�ξ2) −→ (♦(ξ1 → ξ2)) R♦, 3
3. ξ2 −→ (ξ1 → ξ2) R→, 4
4. ξ2, ξ1 −→ ξ2 Ax
5. −→ (♦(ξ1 → ξ2)), (�ξ2) RW, 6
6. −→ (�ξ2) R�, 7
7. −→ ξ2 Hyp
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Definition

Let R′ = 〈C ′,R ′〉 and R′′ = 〈C ′′,R ′′〉 be sequent calculi.

The (rule-)fibring R′ ]R′′ of R′ and R′′ is the sequent calculus
〈C ′ ∪ C ′′,R ′ ∪ R ′′〉.
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Example

We can show that `S4]D−→ (♦′′(ξ2 → (♦′(ξ1 → (�′ξ1)))))

1. −→ ♦′′(ξ2 → (♦′(ξ1 → (�′ξ1)))) Cut, 2, 5
2. (�′′(♦′(ξ1 → (�′ξ1)))) −→ (♦′′(ξ2 → (♦′(ξ1 → (�′ξ1))))) R♦′′, 3
3. (♦′(ξ1 → (�′ξ1))) −→ (ξ2 → (♦′(ξ1 → (�′ξ1)))) R→, 4
4. ξ2, (♦′(ξ1 → (�′ξ1))) −→ (♦′(ξ1 → (�′ξ1))) Ax
5. −→ (♦′′(ξ2 → (♦′(ξ1 → (�′ξ1))))), (�′′(♦′(ξ1 → (�′ξ1)))) RW, 6
6. −→ (�′′(♦′(ξ1 → (�′ξ1)))) R�′′, 7
7. −→ (♦′(ξ1 → (�′ξ1))) R♦′, 8
8. −→ (♦′(ξ1 → (�′ξ1))), (ξ1 → (�′ξ1)) R→, 9
9. ξ1 −→ (♦′(ξ1 → (�′ξ1))), (�′ξ1) R�′, 10

10. −→ (♦′(ξ1 → (�′ξ1))), ξ1 R♦′, 11
11. −→ (♦′(ξ1 → (�′ξ1))), (ξ1 → (�′ξ1)), ξ1 R→, 12
12. ξ1 −→ (♦′(ξ1 → (�′ξ1))), (�′ξ1), ξ1 Ax
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The problem

There is obviously a relation between the derivation above and the
ones done in S4 and D. . . but how can we formalize that?

“Derivation” is a derived notion, whereas rules are primitive; but
useful properties (cut elimination, decidability) are properties of
derivations, not of rules. . .

 how about taking derivations as primitive objects?
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Definitions
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Equivalence

Definition

A sequent calculus given by derivations is a pair D = 〈C ,P〉 where
C is a signature and P = {PΘ : Θ ∈ ℘finSeqC} is a family of
predicates PΘ ⊆ Seq∗C × SeqC such that the following conditions
hold.

Conclusion: if PΘ(ω, s) holds, then s is the first element in ω.

Monotonicity: if Θ1 ⊆ Θ2, then PΘ1 ⊆ PΘ2 .

Closure under substitution: if PΘ(ω, s) holds and σ is a
substitution, then Pσ(Θ)(σ(ω), σ(s)) also holds.
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Definitions
Fibring
Equivalence

Induced calculus from rules

Let R = 〈C ,R〉 be a sequent calculus given by rules and define
D(R) = 〈C ,P〉 where PΘ(ω, s) holds iff ω is a rule-derivation of s
from Θ.

Then D(R) is a sequent calculus given by derivations.

Furthermore, Θ `R s iff Θ `D(R) s.
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Translation

Definition

Let C and C ′ be signatures with C ⊆ C ′ and g : L(C ′)→ N be an
injection.

The translation τg : L(C ′)→ L(C ) is a map defined inductively as
follows:

τg (ξi ) = ξ2i+1 for ξi ∈ Ξ;

τg (c(γ′1, . . . , γ
′
k)) = c(τg (γ′1), . . . , τg (γ′k)) for c ∈ Ck and

γ′1, . . . , γ
′
k ∈ L(C ′);

τg (c ′(γ′1, . . . , γ
′
k)) = ξ2g(c ′(γ′

1,...,γ
′
k )) for c ′ ∈ C ′

k \ Ck and
γ′1, . . . , γ

′
k ∈ L(C ′).
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Definitions
Fibring
Equivalence

Inverse translation

Definition

With C , C ′ and g as above, τ−1
g : Ξ→ L(C ′) is the following

substitution:

τ−1
g (ξ2i+1) = ξi ;

τ−1
g (ξ2i ) = g−1(i).

It is easy to check that τ−1 ◦ τ = id and τ ◦ τ−1 = id.
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Definitions
Fibring
Equivalence

Definition

Let D′ = 〈C ′,P ′〉 and D′′ = 〈C ′′,P ′′〉 be sequent calculi given by
derivations.

The fibring D′ ] D′′ is the sequent calculus 〈C ,P〉, where
C = C ′ ∪ C ′′ and each PΘ is inductively defined as follows.

if P ′
τ ′(Θ)(τ

′(ω), τ ′(s)) holds, then PΘ(ω, s) also holds;

if P ′′
τ ′′(Θ)(τ

′′(ω), τ ′′(s)) holds, then PΘ(ω, s) also holds;

for finite Σ = {s1, . . . , sk} ⊆ SeqC , if PΘ(ωi , si ) holds for
i = 1, . . . , k and PΣ(ωs , s) holds, then PΘ(ω, s) holds, where
ω is the sequence of sequents ωs · ω1 · . . . · ωk .

τ ′ and τ ′′ are the translations of L(C ) to L(C ′) and L(C ′′).
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Definitions
Fibring
Equivalence

Example

We show that `D(S4)]D(D)−→ (♦′′(ξ2 → (♦′(ξ1 → (�′ξ1)))))

1. −→ (♦′′(ξ1 → ξ2)) Cut, 2, 5
2. (�′′ξ2) −→ (♦′′(ξ1 → ξ2)) R♦′′, 3
3. ξ2 −→ (ξ1 → ξ2) R→, 4
4. ξ2, ξ1 −→ ξ2 Ax
5. −→ (♦′′(ξ1 → ξ2)), (�′′ξ2) RW, 6
6. −→ (�′′ξ2) R�′′, 7
7. −→ ξ2 Hyp

1. −→ (♦′(ξ1 → (�′ξ1))) R♦′, 2
2. −→ (♦′(ξ1 → (�′ξ1))), (ξ1 → (�′ξ1)) R→, 3
3. ξ1 −→ (♦′(ξ1 → (�′ξ1))), (�′ξ1) R�′, 4
4. −→ (♦′(ξ1 → (�′ξ1))), ξ1 R♦′, 5
5. −→ (♦′(ξ1 → (�′ξ1))), (ξ1 → (�′ξ1)), ξ1 R→, 6
6. ξ1 −→ (♦′(ξ1 → (�′ξ1))), (�′ξ1), ξ1 Ax
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Definitions
Fibring
Equivalence

Theorem

Let R′ = 〈C ′,R ′〉 and R′′ = 〈C ′′,R ′′〉 be sequent calculi given by
rules such that Cut, LW and RW are in R ′ ∪ R ′′, and define:

D′ = D(R′) and D′′ = D(R′′) are the sequent calculi given by
derivations induced by R′ and R′′;

R = R′ ]R′′ is the fibring of R′ and R′′;

D = D′ ] D′′ is the fibring of D′ and D′′;
C = C ′ ∪ C ′′ is the common signature of R and D.

Then D and R are equivalent systems in the sense that ∆ `R s iff
∆ `D s, for any ∆ ⊆ SeqC and s ∈ SeqC .
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iff, for any ∆ ⊆ SeqC and s ∈ SeqC , whenever ∆ `R s there is a
derivation ω for ∆ `R s that does not use the cut rule.

Theorem

Let R′ and R′′ be sequent calculi given by rules with cut
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Then their fibring R also has cut elimination.
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Algorithm

For each partition of ω do

1 If the partition is singular, check whether
P ′

τ ′(∆)(τ
′(ω), τ ′(s)) holds or P ′′

τ ′′(∆)(τ
′′(ω), τ ′′(s)) holds.

If either is the case, output 1; otherwise move to the next
partition.

2 Otherwise, let ω∗ be the first sequence in the partition
and ω1, . . . , ωn the remaining ones. Let si denote (ωi )1.

3 For each i = 1, . . . , n check whether P∆(ωi , si ) holds. If
this is not the case, go on to the next partition.

4 If the test above succeeded for all i , check whether
P{s1,...,sn}(ω, s) holds. If this is the case, output 1.

When no partitions of ω are left, output 0.
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