
Motivation
Outline

Services: when specification meets implementation

Lúıs Cruz-Filipe
(joint work with A. Lopes)

LaSIGE and
Department of Informatics

FCUL, Lisbon, Portugal

Brouwer Institute Seminar Series
April 7, 2009

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Background

Sensoria, (web) services and service-oriented computing

SRML: very graphical, rich logic with intuitive semantics

Conversation Calculus: same intuitive concepts, simple ideas

A mathematician’s view: the same, at the “right” level of
abstraction

. . . and what is the “right” level of abstraction?

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Background

Sensoria, (web) services and service-oriented computing

SRML: very graphical, rich logic with intuitive semantics

Conversation Calculus: same intuitive concepts, simple ideas

A mathematician’s view: the same, at the “right” level of
abstraction

. . . and what is the “right” level of abstraction?

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Background

Sensoria, (web) services and service-oriented computing

SRML: very graphical, rich logic with intuitive semantics

Conversation Calculus: same intuitive concepts, simple ideas

A mathematician’s view: the same, at the “right” level of
abstraction

. . . and what is the “right” level of abstraction?

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Background

Sensoria, (web) services and service-oriented computing

SRML: very graphical, rich logic with intuitive semantics

Conversation Calculus: same intuitive concepts, simple ideas

A mathematician’s view: the same, at the “right” level of
abstraction

. . . and what is the “right” level of abstraction?

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Background

Sensoria, (web) services and service-oriented computing

SRML: very graphical, rich logic with intuitive semantics

Conversation Calculus: same intuitive concepts, simple ideas

A mathematician’s view: the same, at the “right” level of
abstraction

. . . and what is the “right” level of abstraction?

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Background

Sensoria, (web) services and service-oriented computing

SRML: very graphical, rich logic with intuitive semantics

Conversation Calculus: same intuitive concepts, simple ideas

A mathematician’s view: the same, at the “right” level of
abstraction

. . . and what is the “right” level of abstraction?

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Background

Sensoria, (web) services and service-oriented computing

SRML: very graphical, rich logic with intuitive semantics

Conversation Calculus: same intuitive concepts, simple ideas

A mathematician’s view: the same, at the “right” level of
abstraction

. . . and what is the “right” level of abstraction?

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Background

Sensoria, (web) services and service-oriented computing

SRML: very graphical, rich logic with intuitive semantics

Conversation Calculus: same intuitive concepts, simple ideas

A mathematician’s view: the same, at the “right” level of
abstraction

. . . and what is the “right” level of abstraction?

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Background

Sensoria, (web) services and service-oriented computing

SRML: very graphical, rich logic with intuitive semantics

Conversation Calculus: same intuitive concepts, simple ideas

A mathematician’s view: the same, at the “right” level of
abstraction

. . . and what is the “right” level of abstraction?

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Background

Sensoria, (web) services and service-oriented computing

SRML: very graphical, rich logic with intuitive semantics

Conversation Calculus: same intuitive concepts, simple ideas

A mathematician’s view: the same, at the “right” level of
abstraction

. . . and what is the “right” level of abstraction?

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Motivation

Goal

Establish a formal correspondence between SRML and the
Conversation Calculus.

We don’t want a mapping, translation, or even to give semantics
of one into the other. Just find that “right” level of abstraction.

Several concepts (on either side) do not have correspondence.
We’ll just restrict ourselves to the intersection of both systems.

Goal (revised)

Given a concrete specification, establish guidelines to build an
implementation that will be sound by construction.

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Motivation

Goal

Establish a formal correspondence between SRML and the
Conversation Calculus.

We don’t want a mapping, translation, or even to give semantics
of one into the other. Just find that “right” level of abstraction.

Several concepts (on either side) do not have correspondence.
We’ll just restrict ourselves to the intersection of both systems.

Goal (revised)

Given a concrete specification, establish guidelines to build an
implementation that will be sound by construction.

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Motivation

Goal

Establish a formal correspondence between SRML and the
Conversation Calculus.

We don’t want a mapping, translation, or even to give semantics
of one into the other. Just find that “right” level of abstraction.

Several concepts (on either side) do not have correspondence.
We’ll just restrict ourselves to the intersection of both systems.

Goal (revised)

Given a concrete specification, establish guidelines to build an
implementation that will be sound by construction.

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Motivation

Goal

Establish a formal correspondence between SRML and the
Conversation Calculus.

We don’t want a mapping, translation, or even to give semantics
of one into the other. Just find that “right” level of abstraction.

Several concepts (on either side) do not have correspondence.
We’ll just restrict ourselves to the intersection of both systems.

Goal (revised)

Given a concrete specification, establish guidelines to build an
implementation that will be sound by construction.

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Motivation

Goal

Establish a formal correspondence between SRML and the
Conversation Calculus.

We don’t want a mapping, translation, or even to give semantics
of one into the other. Just find that “right” level of abstraction.

Several concepts (on either side) do not have correspondence.
We’ll just restrict ourselves to the intersection of both systems.

Goal (revised)

Given a concrete specification, establish guidelines to build an
implementation that will be sound by construction.

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

1 Basics

2 Building the bridge

3 Conclusions

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

1 Basics

2 Building the bridge

3 Conclusions

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

1 Basics

2 Building the bridge

3 Conclusions

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

A concrete example
SRML
The Conversation Calculus

Main idea

Common knowledge

A picture is worth a thousand words.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

A concrete example
SRML
The Conversation Calculus

Main idea

Common knowledge

A picture is worth a thousand words.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

A concrete example
SRML
The Conversation Calculus

Case study

Consider the following example from the list of Sensoria case
studies.

Example

A travel agent provides a booking service that, upon receiving a
request for a flight from a customer, executes the following steps:

1 contact two different airlines and ask them for prices for the
flight;

2 book the cheapest flight;

3 return the flight data to the customer.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

A concrete example
SRML
The Conversation Calculus

Case study

Consider the following example from the list of Sensoria case
studies.

Example

A travel agent provides a booking service that, upon receiving a
request for a flight from a customer, executes the following steps:

1 contact two different airlines and ask them for prices for the
flight;

2 book the cheapest flight;

3 return the flight data to the customer.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

A concrete example
SRML
The Conversation Calculus

Case study

Consider the following example from the list of Sensoria case
studies.

Example

A travel agent provides a booking service that, upon receiving a
request for a flight from a customer, executes the following steps:

1 contact two different airlines and ask them for prices for the
flight;

2 book the cheapest flight;

3 return the flight data to the customer.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

A concrete example
SRML
The Conversation Calculus

Case study

Consider the following example from the list of Sensoria case
studies.

Example

A travel agent provides a booking service that, upon receiving a
request for a flight from a customer, executes the following steps:

1 contact two different airlines and ask them for prices for the
flight;

2 book the cheapest flight;

3 return the flight data to the customer.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

A concrete example
SRML
The Conversation Calculus

Case study

Consider the following example from the list of Sensoria case
studies.

Example

A travel agent provides a booking service that, upon receiving a
request for a flight from a customer, executes the following steps:

1 contact two different airlines and ask them for prices for the
flight;

2 book the cheapest flight;

3 return the flight data to the customer.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

A concrete example
SRML
The Conversation Calculus

Case study

Consider the following example from the list of Sensoria case
studies.

Example

A travel agent provides a booking service that, upon receiving a
request for a flight from a customer, executes the following steps:

1 contact two different airlines and ask them for prices for the
flight;

2 book the cheapest flight;

3 return the flight data to the customer.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

A concrete example
SRML
The Conversation Calculus

Specification: diagram

TravelBooking

@
@
�
�

CR :
Customer

BA :
BookingAgent

�

�
�
�
�

�
�
�
�

DB :
EmployeeDB

@@
��

AA1 :
AirlineAgent

�

@@
��

AA2 :
AirlineAgent

�
◇ CB ◇

◇
BD

◇

◇
AB1 ◇

◇
AB2 ◇

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

A concrete example
SRML
The Conversation Calculus

Implementation: diagram

DB

EmployeeTStatus
EmployeeTStatus

BA




Travel

ClientCallBack



AA1

Flight1

Flight1

AA2
Flight2 

Flight2 



Book2 

Book1 

Cancel2

Cancel1

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

A concrete example
SRML
The Conversation Calculus

Insight #1

There’s a clear structural correspondence between specification
and implementation!

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

A concrete example
SRML
The Conversation Calculus

Message passing

within the same context (“here”)

to the other endpoint of a session (“there”)

to the enclosing context (“up”)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

A concrete example
SRML
The Conversation Calculus

Message passing

within the same context (“here”)

to the other endpoint of a session (“there”)

to the enclosing context (“up”)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

A concrete example
SRML
The Conversation Calculus

Message passing

within the same context (“here”)

to the other endpoint of a session (“there”)

to the enclosing context (“up”)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

A concrete example
SRML
The Conversation Calculus

Message passing

within the same context (“here”)

to the other endpoint of a session (“there”)

to the enclosing context (“up”)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

A concrete example
SRML
The Conversation Calculus

Näıve implementation

def travelApp ⇒ (
instance alphaAir ▷ flightAvails ⇐ (

in ↑ flightRequestAA(flightData,travelClass).
out ← flightDetails(flightData,travelClass).
in ← flightTicket(response,price).
out ↑ flightResponseAA(response,price).
(in ↑ bookAA().out ← bookFlight().

+in ↑ cancelAA().out ← cancelFlight())
) ∣ . . . ∣
in ← travelRequest(employee,flightData).
out ↑ employeeTStatusRequest(employee).
in ↑ employeeTStatusResponse(travelClass).
out ↓ flightRequestAA(flightAA,travelClass).out ↓ flightRequestDA(flightDA,travelClass).
((in ↓ flightResponseAA(priceAA,flightAA).out ↓ Done)∣

(in ↓ flightResponseDA(priceDA,flightDA).out ↓ Done)∣
(in ↓ Done.in ↓ Done.
if (priceAA<priceDA) then

(out ← travelResponse(flightAA).out ↓ bookAA().out ↓ cancelDA())
else (out ← travelResponse(flightDA).out ↓ bookDA().out ↓ cancelAA())

)))

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

TravelBooking

@
@
�
�

CR :
Customer

BA :
BookingAgent

�

�
�
�
�

�
�
�
�

DB :
EmployeeDB

@@
��

AA1 :
AirlineAgent

�

@@
��

AA2 :
AirlineAgent

�
◇ CB ◇

◇
BD

◇

◇
AB1 ◇

◇
AB2 ◇

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Insight #1 (rephrased)

An implementation will consist of several subprocesses running in
parallel.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

COMPONENTS

BA: BookingAgent

initBA�init: s=INIT ∧ rec1=false ∧ rec2=false

initBA�term: s=DONE

PROVIDES

CR: Customer

REQUIRES

AA1: AirlineAgent

triggerAA1�trigger: BA.Flight1 ?
AA2: AirlineAgent

triggerAA2�trigger: BA.Flight2 ?

USES

DB: EmployeeDB

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

COMPONENTS

BA: BookingAgent

initBA�init: s=INIT ∧ rec1=false ∧ rec2=false

initBA�term: s=DONE

PROVIDES

CR: Customer

REQUIRES

AA1: AirlineAgent

triggerAA1�trigger: BA.Flight1 ?
AA2: AirlineAgent

triggerAA2�trigger: BA.Flight2 ?

USES

DB: EmployeeDB

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

COMPONENTS

BA: BookingAgent

initBA�init: s=INIT ∧ rec1=false ∧ rec2=false

initBA�term: s=DONE

PROVIDES

CR: Customer

REQUIRES

AA1: AirlineAgent

triggerAA1�trigger: BA.Flight1 ?
AA2: AirlineAgent

triggerAA2�trigger: BA.Flight2 ?

USES

DB: EmployeeDB

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

COMPONENTS

BA: BookingAgent

initBA�init: s=INIT ∧ rec1=false ∧ rec2=false

initBA�term: s=DONE

PROVIDES

CR: Customer

REQUIRES

AA1: AirlineAgent

triggerAA1�trigger: BA.Flight1 ?
AA2: AirlineAgent

triggerAA2�trigger: BA.Flight2 ?

USES

DB: EmployeeDB

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

TravelBooking

@
@
�
�

CR :
Customer

BA :
BookingAgent

�

�
�
�
�

�
�
�
�

DB :
EmployeeDB

@@
��

AA1 :
AirlineAgent

�

@@
��

AA2 :
AirlineAgent

�
◇ CB ◇

◇
BD

◇

◇
AB1 ◇

◇
AB2 ◇

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

LAYER PROTOCOL EmployeeDB is

INTERACTION

r&s EmployeeTStatus

emp: employee
� cl: travelClass

BEHAVIOUR

initiallyEnabled EmployeeTStatus ?

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Insight #2

The system depends upon another service running in the context.
This protocol specifies the type of that service.

This is typing information.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Insight #2

The system depends upon another service running in the context.
This protocol specifies the type of that service.

This is typing information.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

TravelBooking

@
@
�
�

CR :
Customer

BA :
BookingAgent

�

�
�
�
�

�
�
�
�

DB :
EmployeeDB

@@
��

AA1 :
AirlineAgent

�

@@
��

AA2 :
AirlineAgent

�
◇ CB ◇

◇
BD

◇

◇
AB1 ◇

◇
AB2 ◇

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

BUSINESS PROTOCOL Customer is

INTERACTION

s&r TravelRequest

emp: employee
fd: flightData

� fl: flight
BEHAVIOUR

initiallyEnabled TravelRequest ?

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

BUSINESS PROTOCOL AirlineAgent is

INTERACTION

r&s FlightDetails

data: flightData
class: TravelClass

� resp: response
pr: price

rcv Book
rcv Cancel

BEHAVIOUR

initiallyEnabled FlightDetails ?

FlightCallBack ! enables Book ? until Cancel ?

FlightCallBack ! enables Cancel ? until Book ?

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Insight #3

Business protocols are implemented as session endpoints.
The type of a correct implementation should somehow be related
to the behaviour specified in the protocol.

This is more typing information.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Insight #3

Business protocols are implemented as session endpoints.
The type of a correct implementation should somehow be related
to the behaviour specified in the protocol.

This is more typing information.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

More about types

SRML separates behaviour from location. . .

. . . therefore restrict to non-recursive behavioural types:

Message types M consist of:

a polarity !, ? or τ ;

a direction ↑, ↓ or ←;

an event from the SRML specification;

the (atomic) types of its arguments.

B ∶∶= 0 [] M.B [] B ∣ B [] ⊕{M.B; . . . ; M.B} [] &{M.B; . . . ; M.B}

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

More about types

SRML separates behaviour from location. . .

. . . therefore restrict to non-recursive behavioural types:

Message types M consist of:

a polarity !, ? or τ ;

a direction ↑, ↓ or ←;

an event from the SRML specification;

the (atomic) types of its arguments.

B ∶∶= 0 [] M.B [] B ∣ B [] ⊕{M.B; . . . ; M.B} [] &{M.B; . . . ; M.B}

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

More about types

SRML separates behaviour from location. . .

. . . therefore restrict to non-recursive behavioural types:

Message types M consist of:

a polarity !, ? or τ ;

a direction ↑, ↓ or ←;

an event from the SRML specification;

the (atomic) types of its arguments.

B ∶∶= 0 [] M.B [] B ∣ B [] ⊕{M.B; . . . ; M.B} [] &{M.B; . . . ; M.B}

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

More about types

SRML separates behaviour from location. . .

. . . therefore restrict to non-recursive behavioural types:

Message types M consist of:

a polarity !, ? or τ ;

a direction ↑, ↓ or ←;

an event from the SRML specification;

the (atomic) types of its arguments.

B ∶∶= 0 [] M.B [] B ∣ B [] ⊕{M.B; . . . ; M.B} [] &{M.B; . . . ; M.B}

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

More about types

SRML separates behaviour from location. . .

. . . therefore restrict to non-recursive behavioural types:

Message types M consist of:

a polarity !, ? or τ ;

a direction ↑, ↓ or ←;

an event from the SRML specification;

the (atomic) types of its arguments.

B ∶∶= 0 [] M.B [] B ∣ B [] ⊕{M.B; . . . ; M.B} [] &{M.B; . . . ; M.B}

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

More about types

SRML separates behaviour from location. . .

. . . therefore restrict to non-recursive behavioural types:

Message types M consist of:

a polarity !, ? or τ ;

a direction ↑, ↓ or ←;

an event from the SRML specification;

the (atomic) types of its arguments.

B ∶∶= 0 [] M.B [] B ∣ B [] ⊕{M.B; . . . ; M.B} [] &{M.B; . . . ; M.B}

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

More about types

SRML separates behaviour from location. . .

. . . therefore restrict to non-recursive behavioural types:

Message types M consist of:

a polarity !, ? or τ ;

a direction ↑, ↓ or ←;

an event from the SRML specification;

the (atomic) types of its arguments.

B ∶∶= 0 [] M.B [] B ∣ B [] ⊕{M.B; . . . ; M.B} [] &{M.B; . . . ; M.B}

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

More about types

SRML separates behaviour from location. . .

. . . therefore restrict to non-recursive behavioural types:

Message types M consist of:

a polarity !, ? or τ ;

a direction ↑, ↓ or ←;

an event from the SRML specification;

the (atomic) types of its arguments.

B ∶∶= 0 [] M.B [] B ∣ B [] ⊕{M.B; . . . ; M.B} [] &{M.B; . . . ; M.B}

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

More about types

SRML separates behaviour from location. . .

. . . therefore restrict to non-recursive behavioural types:

Message types M consist of:

a polarity !, ? or τ ;

a direction ↑, ↓ or ←;

an event from the SRML specification;

the (atomic) types of its arguments.

B ∶∶= 0 [] M.B [] B ∣ B [] ⊕{M.B; . . . ; M.B} [] &{M.B; . . . ; M.B}

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Allowed behaviours in SRML

For event e, allow E to be either e? or e!.

ϕ ∶∶=initiallyEnabled e? [] E enables e? []
[] E enables e? until E [] E1, . . . ,Ek ensures e!

Comparison of terms has no counterpart in these types.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Allowed behaviours in SRML

For event e, allow E to be either e? or e!.

ϕ ∶∶=initiallyEnabled e? [] E enables e? []
[] E enables e? until E [] E1, . . . ,Ek ensures e!

Comparison of terms has no counterpart in these types.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Allowed behaviours in SRML

For event e, allow E to be either e? or e!.

ϕ ∶∶=initiallyEnabled e? [] E enables e? []
[] E enables e? until E [] E1, . . . ,Ek ensures e!

Comparison of terms has no counterpart in these types.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Allowed behaviours in SRML

For event e, allow E to be either e? or e!.

ϕ ∶∶=initiallyEnabled e? [] E enables e? []
[] E enables e? until E [] E1, . . . ,Ek ensures e!

Comparison of terms has no counterpart in these types.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Explicit behaviours

SRML assumes implicit behaviour associated with some message
types.

Definition

The explicit behaviour associated to an SRML behaviour B is
obtained by adding to B the formulas:

(e ? ensures e�!) for every r&s message e

(e ! enables e�?) for every s&r message e

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Explicit behaviours

SRML assumes implicit behaviour associated with some message
types.

Definition

The explicit behaviour associated to an SRML behaviour B is
obtained by adding to B the formulas:

(e ? ensures e�!) for every r&s message e

(e ! enables e�?) for every s&r message e

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Explicit behaviours

SRML assumes implicit behaviour associated with some message
types.

Definition

The explicit behaviour associated to an SRML behaviour B is
obtained by adding to B the formulas:

(e ? ensures e�!) for every r&s message e

(e ! enables e�?) for every s&r message e

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Explicit behaviours

SRML assumes implicit behaviour associated with some message
types.

Definition

The explicit behaviour associated to an SRML behaviour B is
obtained by adding to B the formulas:

(e ? ensures e�!) for every r&s message e

(e ! enables e�?) for every s&r message e

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Explicit behaviours

SRML assumes implicit behaviour associated with some message
types.

Definition

The explicit behaviour associated to an SRML behaviour B is
obtained by adding to B the formulas:

(e ? ensures e�!) for every r&s message e

(e ! enables e�?) for every s&r message e

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Behaviour trees

A type in the Conversation Calculus generates a tree of possible
traces, containing all sequences of messages allowed by that type.

This tree can be seen as providing a semantics for SRML formulas.

Two extra conditions:

no spurious behaviour;

all communication is along the right direction: “there” for
PROVIDES/REQUIRES interfaces, “up” for USES.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Behaviour trees

A type in the Conversation Calculus generates a tree of possible
traces, containing all sequences of messages allowed by that type.

This tree can be seen as providing a semantics for SRML formulas.

Two extra conditions:

no spurious behaviour;

all communication is along the right direction: “there” for
PROVIDES/REQUIRES interfaces, “up” for USES.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Behaviour trees

A type in the Conversation Calculus generates a tree of possible
traces, containing all sequences of messages allowed by that type.

This tree can be seen as providing a semantics for SRML formulas.

Two extra conditions:

no spurious behaviour;

all communication is along the right direction: “there” for
PROVIDES/REQUIRES interfaces, “up” for USES.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Behaviour trees

A type in the Conversation Calculus generates a tree of possible
traces, containing all sequences of messages allowed by that type.

This tree can be seen as providing a semantics for SRML formulas.

Two extra conditions:

no spurious behaviour;

all communication is along the right direction: “there” for
PROVIDES/REQUIRES interfaces, “up” for USES.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Behaviour trees

A type in the Conversation Calculus generates a tree of possible
traces, containing all sequences of messages allowed by that type.

This tree can be seen as providing a semantics for SRML formulas.

Two extra conditions:

no spurious behaviour;

all communication is along the right direction: “there” for
PROVIDES/REQUIRES interfaces, “up” for USES.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Behaviour trees

A type in the Conversation Calculus generates a tree of possible
traces, containing all sequences of messages allowed by that type.

This tree can be seen as providing a semantics for SRML formulas.

Two extra conditions:

no spurious behaviour;

all communication is along the right direction: “there” for
PROVIDES/REQUIRES interfaces, “up” for USES.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Airline protocol

Example

BAA ≜?← FlightDetails (D,C).!← FlightDetails�(R,P).
&{?← Book (); ?← Cancel ()}

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Airline protocol

Example

BAA ≜?← FlightDetails (D,C).!← FlightDetails�(R,P).
&{?← Book (); ?← Cancel ()}

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

TravelBooking

@
@
�
�

CR :
Customer

BA :
BookingAgent

�

�
�
�
�

�
�
�
�

DB :
EmployeeDB

@@
��

AA1 :
AirlineAgent

�

@@
��

AA2 :
AirlineAgent

�
◇ CB ◇

◇
BD

◇

◇
AB1 ◇

◇
AB2 ◇

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

BUSINESS ROLE BookingAgent is

INTERACTION

rcv Travel

emp: employee
fl: flightData

s&r EmployeeTStatus

emp: employee
� cl: travelClass

(...)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

ORCHESTRATION

local s: [INIT, DBQUERY, WAIT, DONE]
e:employee, f:flightData, tc:travelClass
p1:price, rec1:boolean, f1:flight
p2:price, rec2:boolean, f2:flight

transition GetData

triggeredBy Travel
guardedBy s=INIT
effects e=Travel.emp ∧ f=Travel.fl ∧

s’=DBQUERY

sends EmployeeTStatus ∧
EmployeeTStatus.emp=e

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

transition BookFlight

triggeredBy EmployeeTStatus�
guardedBy s=DBQUERY
effects tc=EmployeeTStatus.trav ∧ s’=WAIT

sends Flight1 ∧ Flight2 ∧
Flight1.flD=f ∧ Flight1.cl=tc ∧
Flight2.flD=f ∧ Flight2.cl=tc

transition FlightAnsweri (i = 1,2)

triggeredBy Flighti�

guardedBy s=WAIT ∧ ¬reci

effects reci=true ∧ pi=Flighti.pr ∧
fi=Flighti.fl

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

transition ClientCallBacki (i = 1,2)

triggeredBy
guardedBy s=WAIT ∧ rec1 ∧ rec2 ∧ pi < p3−i

effects S=DONE

sends Cancel3−i ∧ ClientCallBack ∧
ClientCallBack.fl=fi ∧ Booki

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Insight #4

A correct implementation of a component allows as semantics the
transition system specifying its behaviour.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

More precisely: there should be a “bisimulation” between the
transition system in the specification and the one induced by the
implementation.

Formal definition beyond the scope of this presentation :-) besides
requiring that all messages be read/written “here”.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

More precisely: there should be a “bisimulation” between the
transition system in the specification and the one induced by the
implementation.

Formal definition beyond the scope of this presentation :-) besides
requiring that all messages be read/written “here”.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

More precisely: there should be a “bisimulation” between the
transition system in the specification and the one induced by the
implementation.

Formal definition beyond the scope of this presentation :-) besides
requiring that all messages be read/written “here”.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Example

in ↓ Travel (e,f).

out ↓ EmployeeTStatus (e).
in ↓ EmployeeTStatus� (tc).

out ↓ Flight1 (f,tc).

out ↓ Flight2 (f,tc).
(

(in ↓ Flight1� (p1,f1).out ↓ Done)∣
(in ↓ Flight2� (p2,f2).out ↓ Done)∣
(in ↓ Done.in ↓ Done.
if (p1 < p2) then

(out ↓ ClientCallBack (f1).out ↓ Book1 ().out ↓ Cancel2 ())

else (out ↓ ClientCallBack (f2).out ↓ Book2 ().out ↓ Cancel1 ())
))

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

TravelBooking

@
@
�
�

CR :
Customer

BA :
BookingAgent

�

�
�
�
�

�
�
�
�

DB :
EmployeeDB

@@
��

AA1 :
AirlineAgent

�

@@
��

AA2 :
AirlineAgent

�
◇ CB ◇

◇
BD

◇

◇
AB1 ◇

◇
AB2 ◇

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

CR: Customer c1 CB d1 BA: BookingAgent

s&r TravelRequest S1 R1 rcv Travel

from i1 ≡ i1 emp
fd i2 i2 fl

S2 snd ClientCallBack

� fl o1 ≡ o1 fl

BA: BookingAgent c2 BD d2 DB: EmployeeDB

s&r EmployeeTStatus S1 R1 r&s EmployeeTStatus

emp i1 ≡ i1 emp
� trav o1 o1 � cl

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

CR: Customer c1 CB d1 BA: BookingAgent

s&r TravelRequest S1 R1 rcv Travel

from i1 ≡ i1 emp
fd i2 i2 fl

S2 snd ClientCallBack

� fl o1 ≡ o1 fl

BA: BookingAgent c2 BD d2 DB: EmployeeDB

s&r EmployeeTStatus S1 R1 r&s EmployeeTStatus

emp i1 ≡ i1 emp
� trav o1 o1 � cl

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

AA1: AirlineAgent c3 AB1 d3 BA: BookingAgent

r&s FlightDetails R1 S1 s&r Flight1

data i1 i1 flD
class i2 ≡ i2 cl

� resp o1 o1 � fl
pr o2 o2 pr

rcv Book R2 ≡ S2 snd Book1

rcv Cancel R3 ≡ S3 snd Cancel1

Wire AB2 is similar.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

AA1: AirlineAgent c3 AB1 d3 BA: BookingAgent

r&s FlightDetails R1 S1 s&r Flight1

data i1 i1 flD
class i2 ≡ i2 cl

� resp o1 o1 � fl
pr o2 o2 pr

rcv Book R2 ≡ S2 snd Book1

rcv Cancel R3 ≡ S3 snd Cancel1

Wire AB2 is similar.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Can we see a wire as a process?

A (simple) wire reads messages from one endpoint and posts them
at the other endpoint.

A (simple) wire passes messages across contexts.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Can we see a wire as a process?

A (simple) wire reads messages from one endpoint and posts them
at the other endpoint.

A (simple) wire passes messages across contexts.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Can we see a wire as a process?

A (simple) wire reads messages from one endpoint and posts them
at the other endpoint.

A (simple) wire passes messages across contexts.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Insight #5

Wires are processes just like other components.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Simple wires just relay messages.

Wires to the orchestrator are implemented at the other endpoint,
following its protocol, and relay their messages to the
orchestrator’s context.

Wires between two non-orchestrators are implemented at both
endpoints and relay their messages to the orchestrators’ context,
using the wire’s name as identifier.

Wires between orchestrators consist simply of the parallel
composition of all messages being relayed.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Simple wires just relay messages.

Wires to the orchestrator are implemented at the other endpoint,
following its protocol, and relay their messages to the
orchestrator’s context.

Wires between two non-orchestrators are implemented at both
endpoints and relay their messages to the orchestrators’ context,
using the wire’s name as identifier.

Wires between orchestrators consist simply of the parallel
composition of all messages being relayed.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Simple wires just relay messages.

Wires to the orchestrator are implemented at the other endpoint,
following its protocol, and relay their messages to the
orchestrator’s context.

Wires between two non-orchestrators are implemented at both
endpoints and relay their messages to the orchestrators’ context,
using the wire’s name as identifier.

Wires between orchestrators consist simply of the parallel
composition of all messages being relayed.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Simple wires just relay messages.

Wires to the orchestrator are implemented at the other endpoint,
following its protocol, and relay their messages to the
orchestrator’s context.

Wires between two non-orchestrators are implemented at both
endpoints and relay their messages to the orchestrators’ context,
using the wire’s name as identifier.

Wires between orchestrators consist simply of the parallel
composition of all messages being relayed.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Simple wires just relay messages.

Wires to the orchestrator are implemented at the other endpoint,
following its protocol, and relay their messages to the
orchestrator’s context.

Wires between two non-orchestrators are implemented at both
endpoints and relay their messages to the orchestrators’ context,
using the wire’s name as identifier.

Wires between orchestrators consist simply of the parallel
composition of all messages being relayed.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Simple wires just relay messages.

Wires to the orchestrator are implemented at the other endpoint,
following its protocol, and relay their messages to the
orchestrator’s context.

Wires between two non-orchestrators are implemented at both
endpoints and relay their messages to the orchestrators’ context,
using the wire’s name as identifier.

Wires between orchestrators consist simply of the parallel
composition of all messages being relayed.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Simple wires just relay messages.

Wires to the orchestrator are implemented at the other endpoint,
following its protocol, and relay their messages to the
orchestrator’s context.

Wires between two non-orchestrators are implemented at both
endpoints and relay their messages to the orchestrators’ context,
using the wire’s name as identifier.

Wires between orchestrators consist simply of the parallel
composition of all messages being relayed.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Recall the protocol at the REQUIRES interface.

BAA ≜?← FlightDetails (D,C).!← FlightDetails�(R,P).
&{?← Book (); ?← Cancel ()}

Wire AB1, connecting this interface to the orchestrator, becomes

in ↑ BA Flight1 (data,class).

out ← AA1 FlightDetails (data,class).
in ← AA1 FlightDetails� (resp,pr).
out ↑ BA Flight1� (resp,pr).

((in ↑ BA Book1 ().out ← AA1 Book ())
+

(in ↑ BA Cancel1 ().out ← AA1 Cancel ()))

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Recall the protocol at the REQUIRES interface.

BAA ≜?← FlightDetails (D,C).!← FlightDetails�(R,P).
&{?← Book (); ?← Cancel ()}

Wire AB1, connecting this interface to the orchestrator, becomes

in ↑ BA Flight1 (data,class).

out ← AA1 FlightDetails (data,class).
in ← AA1 FlightDetails� (resp,pr).
out ↑ BA Flight1� (resp,pr).

((in ↑ BA Book1 ().out ← AA1 Book ())
+

(in ↑ BA Cancel1 ().out ← AA1 Cancel ()))

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Recall the protocol at the REQUIRES interface.

BAA ≜?← FlightDetails (D,C).!← FlightDetails�(R,P).
&{?← Book (); ?← Cancel ()}

Wire AB1, connecting this interface to the orchestrator, becomes

in ↑ BA Flight1 (data,class).

out ← AA1 FlightDetails (data,class).
in ← AA1 FlightDetails� (resp,pr).
out ↑ BA Flight1� (resp,pr).

((in ↑ BA Book1 ().out ← AA1 Book ())
+

(in ↑ BA Cancel1 ().out ← AA1 Cancel ()))

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

Recall the protocol at the REQUIRES interface.

BAA ≜?← FlightDetails (D,C).!← FlightDetails�(R,P).
&{?← Book (); ?← Cancel ()}

Wire AB1, connecting this interface to the orchestrator, becomes

in ↑ BA Flight1 (data,class).

out ← AA1 FlightDetails (data,class).
in ← AA1 FlightDetails� (resp,pr).
out ↑ BA Flight1� (resp,pr).

((in ↑ BA Book1 ().out ← AA1 Book ())
+

(in ↑ BA Cancel1 ().out ← AA1 Cancel ()))

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

What have we learned?

Components yield processes.

Wires yield processes.

Other protocols require existence of processes with specific
behaviour (type).

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

What have we learned?

Components yield processes.

Wires yield processes.

Other protocols require existence of processes with specific
behaviour (type).

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

What have we learned?

Components yield processes.

Wires yield processes.

Other protocols require existence of processes with specific
behaviour (type).

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

What have we learned?

Components yield processes.

Wires yield processes.

Other protocols require existence of processes with specific
behaviour (type).

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

How everything fits

Assume:

P implements the wire ends at the PROVIDES interface;

Ci implement the orchestrators;

Ui implement wire ends at each used module;

Ri have the form instance Pi ▶ Si ⇐ Qi , where Pi provides
service Si being invoked at REQUIRES interface i with wire
ends Si .

The implementation is

defService ⇐ (P ∣ C1 ∣ ⋯ ∣ Ck ∣ U1 ∣ ⋯ ∣ Um ∣ R1 ∣ ⋯ ∣ Rn)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

How everything fits

Assume:

P implements the wire ends at the PROVIDES interface;

Ci implement the orchestrators;

Ui implement wire ends at each used module;

Ri have the form instance Pi ▶ Si ⇐ Qi , where Pi provides
service Si being invoked at REQUIRES interface i with wire
ends Si .

The implementation is

defService ⇐ (P ∣ C1 ∣ ⋯ ∣ Ck ∣ U1 ∣ ⋯ ∣ Um ∣ R1 ∣ ⋯ ∣ Rn)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

How everything fits

Assume:

P implements the wire ends at the PROVIDES interface;

Ci implement the orchestrators;

Ui implement wire ends at each used module;

Ri have the form instance Pi ▶ Si ⇐ Qi , where Pi provides
service Si being invoked at REQUIRES interface i with wire
ends Si .

The implementation is

defService ⇐ (P ∣ C1 ∣ ⋯ ∣ Ck ∣ U1 ∣ ⋯ ∣ Um ∣ R1 ∣ ⋯ ∣ Rn)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

How everything fits

Assume:

P implements the wire ends at the PROVIDES interface;

Ci implement the orchestrators;

Ui implement wire ends at each used module;

Ri have the form instance Pi ▶ Si ⇐ Qi , where Pi provides
service Si being invoked at REQUIRES interface i with wire
ends Si .

The implementation is

defService ⇐ (P ∣ C1 ∣ ⋯ ∣ Ck ∣ U1 ∣ ⋯ ∣ Um ∣ R1 ∣ ⋯ ∣ Rn)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

How everything fits

Assume:

P implements the wire ends at the PROVIDES interface;

Ci implement the orchestrators;

Ui implement wire ends at each used module;

Ri have the form instance Pi ▶ Si ⇐ Qi , where Pi provides
service Si being invoked at REQUIRES interface i with wire
ends Si .

The implementation is

defService ⇐ (P ∣ C1 ∣ ⋯ ∣ Ck ∣ U1 ∣ ⋯ ∣ Um ∣ R1 ∣ ⋯ ∣ Rn)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

How everything fits

Assume:

P implements the wire ends at the PROVIDES interface;

Ci implement the orchestrators;

Ui implement wire ends at each used module;

Ri have the form instance Pi ▶ Si ⇐ Qi , where Pi provides
service Si being invoked at REQUIRES interface i with wire
ends Si .

The implementation is

defService ⇐ (P ∣ C1 ∣ ⋯ ∣ Ck ∣ U1 ∣ ⋯ ∣ Um ∣ R1 ∣ ⋯ ∣ Rn)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

How everything fits

Assume:

P implements the wire ends at the PROVIDES interface;

Ci implement the orchestrators;

Ui implement wire ends at each used module;

Ri have the form instance Pi ▶ Si ⇐ Qi , where Pi provides
service Si being invoked at REQUIRES interface i with wire
ends Si .

The implementation is

defService ⇐ (P ∣ C1 ∣ ⋯ ∣ Ck ∣ U1 ∣ ⋯ ∣ Um ∣ R1 ∣ ⋯ ∣ Rn)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

The nice part

Applying this to our example yields almost the process that had
been defined directly.

Both processes are equivalent (one would hope bisimilar).

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

The nice part

Applying this to our example yields almost the process that had
been defined directly.

Both processes are equivalent (one would hope bisimilar).

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Interfaces
Protocols
Wires
Plugging it all together

The nice part

Applying this to our example yields almost the process that had
been defined directly.

Both processes are equivalent (one would hope bisimilar).

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

So what?

For the specification

Realizable specification

No deadlock

For the implementation

Soundness

Inherits properties proved abstractly

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

So what?

For the specification

Realizable specification

No deadlock

For the implementation

Soundness

Inherits properties proved abstractly

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

So what?

For the specification

Realizable specification

No deadlock

For the implementation

Soundness

Inherits properties proved abstractly

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

So what?

For the specification

Realizable specification

No deadlock

For the implementation

Soundness

Inherits properties proved abstractly

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

So what?

For the specification

Realizable specification

No deadlock

For the implementation

Soundness

Inherits properties proved abstractly

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

So what?

For the specification

Realizable specification

No deadlock

For the implementation

Soundness

Inherits properties proved abstractly

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

So what?

For the specification

Realizable specification

No deadlock

For the implementation

Soundness

Inherits properties proved abstractly

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Future work

More formal proofs of some technical details

Actually write a paper. . .

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Future work

More formal proofs of some technical details

Actually write a paper. . .

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
Building the bridge

Conclusions

Future work

More formal proofs of some technical details

Actually write a paper. . .

Lúıs Cruz-Filipe Services: when specification meets implementation

	Motivation
	Outline
	
	Basics
	
	
	

	Building the bridge
	
	
	
	

	Conclusions

