
Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Computing Repairs from Active Integrity
Constraints

L. Cruz-Filipe1,2,4 P. Engrácia1,2 G. Gaspar3,4 I. Nunes3,4

1Escola Superior Náutica Infante D. Henrique

2Centro de Matemática e Aplicações Fundamentais

3Faculty of Sciences, University of Lisbon

4Laboratory of Agent Modelling (LabMAg)

LabMAg Seminar
June 25th, 2013

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

The Problem

Databases typically pose conditions on data (“integrity
constraints”). . .

. . . but because of errors sometimes these conditions no longer
hold.

Question

How can we repair a database that no longer satisfies its integrity
constraints?

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

The Problem

Databases typically pose conditions on data (“integrity
constraints”). . .
. . . but because of errors sometimes these conditions no longer
hold.

Question

How can we repair a database that no longer satisfies its integrity
constraints?

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

The Problem

Databases typically pose conditions on data (“integrity
constraints”). . .
. . . but because of errors sometimes these conditions no longer
hold.

Question

How can we repair a database that no longer satisfies its integrity
constraints?

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Founded and justified repairs

4 Future directions

5 Conclusions

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Founded and justified repairs

4 Future directions

5 Conclusions

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Founded and justified repairs

4 Future directions

5 Conclusions

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Founded and justified repairs

4 Future directions

5 Conclusions

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Founded and justified repairs

4 Future directions

5 Conclusions

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Founded and justified repairs

4 Future directions

5 Conclusions

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

A database of family relations (I)

Consider a database with information on family relations.

Fact

siblingOf(John,Mary)

This database should also contain

Missing fact

siblingOf(Mary, John)

Integrity constraint (simple)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

A database of family relations (I)

Consider a database with information on family relations.

Fact

siblingOf(John,Mary)

This database should also contain

Missing fact

siblingOf(Mary, John)

Integrity constraint (simple)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

A database of family relations (I)

Consider a database with information on family relations.

Fact

siblingOf(John,Mary)

This database should also contain

Missing fact

siblingOf(Mary, John)

Integrity constraint (simple)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

A database of family relations (I)

Consider a database with information on family relations.

Fact

siblingOf(John,Mary)

This database should also contain

Missing fact

siblingOf(Mary, John)

Integrity constraint (simple)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

A database of family relations (II)

Fact

Parent(John)

This database should also contain

Missing fact

fatherOf(John, . . .)

(motherOf(John, . . .) would fix this, but would cause other
problems)

Integrity constraint (existential)

∀x .(Parent(x) ⊃ ∃y .(fatherOf(x , y) ∨motherOf(x , y)))

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

A database of family relations (II)

Fact

Parent(John)

This database should also contain

Missing fact

fatherOf(John, . . .)

(motherOf(John, . . .) would fix this, but would cause other
problems)

Integrity constraint (existential)

∀x .(Parent(x) ⊃ ∃y .(fatherOf(x , y) ∨motherOf(x , y)))

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

A database of family relations (II)

Fact

Parent(John)

This database should also contain

Missing fact

fatherOf(John, . . .)

(motherOf(John, . . .) would fix this, but would cause other
problems)

Integrity constraint (existential)

∀x .(Parent(x) ⊃ ∃y .(fatherOf(x , y) ∨motherOf(x , y)))

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

A database of family relations (II)

Fact

Parent(John)

This database should also contain

Missing fact

fatherOf(John, . . .)

(motherOf(John, . . .) would fix this, but would cause other
problems)

Integrity constraint (existential)

∀x .(Parent(x) ⊃ ∃y .(fatherOf(x , y) ∨motherOf(x , y)))

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

A database of family relations (III)

Fact

fatherOf(John,Paul)

Fact

fatherOf(Jack,Paul)

Something is wrong here. . .

Integrity constraint (cardinality)

∀x∀y∀z .((fatherOf(x , z) ∧ fatherOf(y , z)) ⊃ x = y)

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

A database of family relations (III)

Fact

fatherOf(John,Paul)

Fact

fatherOf(Jack,Paul)

Something is wrong here. . .

Integrity constraint (cardinality)

∀x∀y∀z .((fatherOf(x , z) ∧ fatherOf(y , z)) ⊃ x = y)

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

A database of family relations (III)

Fact

fatherOf(John,Paul)

Fact

fatherOf(Jack,Paul)

Something is wrong here. . .

Integrity constraint (cardinality)

∀x∀y∀z .((fatherOf(x , z) ∧ fatherOf(y , z)) ⊃ x = y)

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

A database of family relations (III)

Fact

fatherOf(John,Paul)

Fact

fatherOf(Jack,Paul)

Something is wrong here. . .

Integrity constraint (cardinality)

∀x∀y∀z .((fatherOf(x , z) ∧ fatherOf(y , z)) ⊃ x = y)

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Sometimes we can fix the problem automatically. . .

Inconsistency

siblingOf(John,Mary)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Solution

Add siblingOf(Mary, John)

. . . but is this so automatic?

Another solution

Remove siblingOf(John,Mary)

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Sometimes we can fix the problem automatically. . .

Inconsistency

siblingOf(John,Mary)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Solution

Add siblingOf(Mary, John)

. . . but is this so automatic?

Another solution

Remove siblingOf(John,Mary)

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Sometimes we can fix the problem automatically. . .

Inconsistency

siblingOf(John,Mary)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Solution

Add siblingOf(Mary, John)

. . . but is this so automatic?

Another solution

Remove siblingOf(John,Mary)

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Sometimes we can fix the problem automatically. . .

Inconsistency

siblingOf(John,Mary)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Solution

Add siblingOf(Mary, John)

. . . but is this so automatic?

Another solution

Remove siblingOf(John,Mary)

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Sometimes we can fix the problem automatically. . .

Oops.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

. . . sometimes not really. . .

Inconsistency

Parent(John)

∀x .(Parent(x) ⊃ ∃y .(fatherOf(x , y) ∨motherOf(x , y)))

Solution

Add fatherOf(John, ???)

What should we substitute for y?

Another solution

Remove Parent(John)

Ok, but. . .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

. . . sometimes not really. . .

Inconsistency

Parent(John)

∀x .(Parent(x) ⊃ ∃y .(fatherOf(x , y) ∨motherOf(x , y)))

Solution

Add fatherOf(John, ???)

What should we substitute for y?

Another solution

Remove Parent(John)

Ok, but. . .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

. . . sometimes not really. . .

Inconsistency

Parent(John)

∀x .(Parent(x) ⊃ ∃y .(fatherOf(x , y) ∨motherOf(x , y)))

Solution

Add fatherOf(John, ???)

What should we substitute for y?

Another solution

Remove Parent(John)

Ok, but. . .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

. . . sometimes not really. . .

Inconsistency

Parent(John)

∀x .(Parent(x) ⊃ ∃y .(fatherOf(x , y) ∨motherOf(x , y)))

Solution

Add fatherOf(John, ???)

What should we substitute for y?

Another solution

Remove Parent(John)

Ok, but. . .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

. . . sometimes not really. . .

Inconsistency

Parent(John)

∀x .(Parent(x) ⊃ ∃y .(fatherOf(x , y) ∨motherOf(x , y)))

Solution

Add fatherOf(John, ???)

What should we substitute for y?

Another solution

Remove Parent(John)

Ok, but. . .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

. . . and computers do not like to make choices.

Inconsistency

fatherOf(John,Paul)

fatherOf(Jack,Paul)

∀x∀y∀z .((fatherOf(x , z) ∧ fatherOf(y , z)) ⊃ x = y)

Typical database semantics implies that John 6= Jack.

Solution

Remove fatherOf(John,Paul)

Another solution

Remove fatherOf(Jack,Paul)

But which?

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

. . . and computers do not like to make choices.

Inconsistency

fatherOf(John,Paul)

fatherOf(Jack,Paul)

∀x∀y∀z .((fatherOf(x , z) ∧ fatherOf(y , z)) ⊃ x = y)

Typical database semantics implies that John 6= Jack.

Solution

Remove fatherOf(John,Paul)

Another solution

Remove fatherOf(Jack,Paul)

But which?

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

. . . and computers do not like to make choices.

Inconsistency

fatherOf(John,Paul)

fatherOf(Jack,Paul)

∀x∀y∀z .((fatherOf(x , z) ∧ fatherOf(y , z)) ⊃ x = y)

Typical database semantics implies that John 6= Jack.

Solution

Remove fatherOf(John,Paul)

Another solution

Remove fatherOf(Jack,Paul)

But which?

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

. . . and computers do not like to make choices.

Inconsistency

fatherOf(John,Paul)

fatherOf(Jack,Paul)

∀x∀y∀z .((fatherOf(x , z) ∧ fatherOf(y , z)) ⊃ x = y)

Typical database semantics implies that John 6= Jack.

Solution

Remove fatherOf(John,Paul)

Another solution

Remove fatherOf(Jack,Paul)

But which?

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

. . . and computers do not like to make choices.

Inconsistency

fatherOf(John,Paul)

fatherOf(Jack,Paul)

∀x∀y∀z .((fatherOf(x , z) ∧ fatherOf(y , z)) ⊃ x = y)

Typical database semantics implies that John 6= Jack.

Solution

Remove fatherOf(John,Paul)

Another solution

Remove fatherOf(Jack,Paul)

But which?

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

To make matters worse. . .

Exercise

Think up a scenario where the “bad” solution is actually the good
one and the “good” solution is the bad one.

Solution

Imagine information is being removed from the database.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

To make matters worse. . .

Exercise

Think up a scenario where the “bad” solution is actually the good
one and the “good” solution is the bad one.

Solution

Imagine information is being removed from the database.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

To make matters worse. . .

Exercise

Think up a scenario where the “bad” solution is actually the good
one and the “good” solution is the bad one.

Solution

Imagine information is being removed from the database.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Founded and justified repairs

4 Future directions

5 Conclusions

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Active integrity constraints

Motivation

Specify a constraint and propose possible solutions.

Works both ways:

may express preferences

may eliminate options

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Active integrity constraints

Motivation

Specify a constraint and propose possible solutions.

Works both ways:

may express preferences

may eliminate options

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Active integrity constraints

Motivation

Specify a constraint and propose possible solutions.

Works both ways:

may express preferences

may eliminate options

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Active integrity constraints

Motivation

Specify a constraint and propose possible solutions.

Works both ways:

may express preferences

may eliminate options

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Family relations, revisited

Integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Family relations, revisited

Integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Active integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ +siblingOf(y , x))

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Family relations, revisited

Integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Active integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ −siblingOf(x , y))

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Family relations, revisited

Integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Active integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃
+ siblingOf(y , x) | −siblingOf(x , y))

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Active integrity constraints

Definition (Caroprese et al., 2011)

An Active integrity constraint is a formula of the form

L1, . . . , Lm ⊃ α1 | . . . | αk

where {αD
1 , . . . , α

D
k } ⊆ {L1, . . . , Lm}.

A valid AIC

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ +siblingOf(y , x)

An invalid AIC

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ −siblingOf(x , y) | +Parent(x)

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Active integrity constraints

Definition (Caroprese et al., 2011)

An Active integrity constraint is a formula of the form

L1, . . . , Lm ⊃ α1 | . . . | αk

where {αD
1 , . . . , α

D
k } ⊆ {L1, . . . , Lm}.

A valid AIC

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ +siblingOf(y , x)

An invalid AIC

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ −siblingOf(x , y) | +Parent(x)

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Active integrity constraints

Definition (Caroprese et al., 2011)

An Active integrity constraint is a formula of the form

L1, . . . , Lm ⊃ α1 | . . . | αk

where {αD
1 , . . . , α

D
k } ⊆ {L1, . . . , Lm}.

A valid AIC

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ +siblingOf(y , x)

An invalid AIC

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ −siblingOf(x , y) | +Parent(x)

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Intuitive semantics of AICs

A generic AIC

L1, . . . , Lm ⊃ α1 | . . . | αk

conjunction on the left (“body”)

disjunction on the right (“head”)

semantics of (normal) implication

holds iff one of the Li s fails (but. . .)

{αD
1 , . . . , α

D
k } are updatable literals

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Intuitive semantics of AICs

A generic AIC

L1, . . . , Lm ⊃ α1 | . . . | αk

conjunction on the left (“body”)

disjunction on the right (“head”)

semantics of (normal) implication

holds iff one of the Li s fails (but. . .)

{αD
1 , . . . , α

D
k } are updatable literals

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Intuitive semantics of AICs

A generic AIC

L1, . . . , Lm ⊃ α1 | . . . | αk

conjunction on the left (“body”)

disjunction on the right (“head”)

semantics of (normal) implication

holds iff one of the Li s fails (but. . .)

{αD
1 , . . . , α

D
k } are updatable literals

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Intuitive semantics of AICs

A generic AIC

L1, . . . , Lm ⊃ α1 | . . . | αk

conjunction on the left (“body”)

disjunction on the right (“head”)

semantics of (normal) implication

holds iff one of the Li s fails (but. . .)

{αD
1 , . . . , α

D
k } are updatable literals

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Intuitive semantics of AICs

A generic AIC

L1, . . . , Lm ⊃ α1 | . . . | αk

conjunction on the left (“body”)

disjunction on the right (“head”)

semantics of (normal) implication

holds iff one of the Li s fails (but. . .)

{αD
1 , . . . , α

D
k } are updatable literals

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Intuitive semantics of AICs

A generic AIC

L1, . . . , Lm ⊃ α1 | . . . | αk

conjunction on the left (“body”)

disjunction on the right (“head”)

semantics of (normal) implication

holds iff one of the Li s fails (but. . .)

{αD
1 , . . . , α

D
k } are updatable literals

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Repairs

Definition

Let I be a database and η be a set of (A)ICs. A weak repair for I
and η is a consistent set U of update actions such that:

U consists of essential actions only

I ◦ U |= η

(Sorry for the notation.)

Definition

A repair is a weak repair that is minimal w.r.t. inclusion.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Repairs

Definition

Let I be a database and η be a set of (A)ICs. A weak repair for I
and η is a consistent set U of update actions such that:

U consists of essential actions only

I ◦ U |= η

(Sorry for the notation.)

Definition

A repair is a weak repair that is minimal w.r.t. inclusion.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Repairs

Definition

Let I be a database and η be a set of (A)ICs. A weak repair for I
and η is a consistent set U of update actions such that:

U consists of essential actions only

I ◦ U |= η

(Sorry for the notation.)

Definition

A repair is a weak repair that is minimal w.r.t. inclusion.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Repairs

Definition

Let I be a database and η be a set of (A)ICs. A weak repair for I
and η is a consistent set U of update actions such that:

U consists of essential actions only

I ◦ U |= η

(Sorry for the notation.)

Definition

A repair is a weak repair that is minimal w.r.t. inclusion.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Family relations, yet again

Inconsistency

siblingOf(John,Mary)

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ +siblingOf(y , x)

A repair

+siblingOf(Mary, John)

Another repair

−siblingOf(John,Mary)

A weak repair

+siblingOf(Mary, John),+Parent(John)

Not a weak repair

+siblingOf(Mary, John),−siblingOf(John,Mary)

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Family relations, yet again

A repair

+siblingOf(Mary, John)

Another repair

−siblingOf(John,Mary)

A weak repair

+siblingOf(Mary, John),+Parent(John)

Not a weak repair

+siblingOf(Mary, John),−siblingOf(John,Mary)

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Family relations, yet again

A repair

+siblingOf(Mary, John)

Another repair

−siblingOf(John,Mary)

A weak repair

+siblingOf(Mary, John),+Parent(John)

Not a weak repair

+siblingOf(Mary, John),−siblingOf(John,Mary)

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Family relations, yet again

A repair

+siblingOf(Mary, John)

Another repair

−siblingOf(John,Mary)

A weak repair

+siblingOf(Mary, John),+Parent(John)

Not a weak repair

+siblingOf(Mary, John),−siblingOf(John,Mary)

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Family relations, yet again

A repair

+siblingOf(Mary, John)

Another repair

−siblingOf(John,Mary)

A weak repair

+siblingOf(Mary, John),+Parent(John)

Not a weak repair

+siblingOf(Mary, John),−siblingOf(John,Mary)

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Where does the “active” part come in?

The notion of (weak) repair ignores the head of the AIC.

We will come back to that later.

At this stage, how can we find repairs?

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Where does the “active” part come in?

The notion of (weak) repair ignores the head of the AIC.

We will come back to that later.

At this stage, how can we find repairs?

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Where does the “active” part come in?

The notion of (weak) repair ignores the head of the AIC.

We will come back to that later.

At this stage, how can we find repairs?

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Finding weak repairs is NP-complete

Algorithm

1 Choose a set U of update actions (based on I)

2 Compute I ◦ U
3 Check if all AICs in η hold

Each step can be done in polynomial time on I and η.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Finding weak repairs is NP-complete

Algorithm

1 Choose a set U of update actions (based on I)

2 Compute I ◦ U
3 Check if all AICs in η hold

Each step can be done in polynomial time on I and η.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Finding weak repairs is NP-complete

Algorithm

1 Choose a set U of update actions (based on I)

2 Compute I ◦ U

3 Check if all AICs in η hold

Each step can be done in polynomial time on I and η.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Finding weak repairs is NP-complete

Algorithm

1 Choose a set U of update actions (based on I)

2 Compute I ◦ U
3 Check if all AICs in η hold

Each step can be done in polynomial time on I and η.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Finding weak repairs is NP-complete

Algorithm

1 Choose a set U of update actions (based on I)

2 Compute I ◦ U
3 Check if all AICs in η hold

Each step can be done in polynomial time on I and η.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Finding weak repairs is NP-complete, our version

Tree algorithm

Build a tree (the repair tree for I and η) as follows.

1 The root is ∅
2 For each consistent node n and rule r , if I ◦ n 6|= r , then:

for each action L in the body of r , n′ = n∪{LD} is a child of n
the edge from n to n′ is labeled by r

Lemma

This tree is finite.

Every consistent leaf is a weak repair for I and η.

Every repair for I and η corresponds to a leaf in the tree.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Finding weak repairs is NP-complete, our version

Tree algorithm

Build a tree (the repair tree for I and η) as follows.

1 The root is ∅

2 For each consistent node n and rule r , if I ◦ n 6|= r , then:

for each action L in the body of r , n′ = n∪{LD} is a child of n
the edge from n to n′ is labeled by r

Lemma

This tree is finite.

Every consistent leaf is a weak repair for I and η.

Every repair for I and η corresponds to a leaf in the tree.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Finding weak repairs is NP-complete, our version

Tree algorithm

Build a tree (the repair tree for I and η) as follows.

1 The root is ∅
2 For each consistent node n and rule r , if I ◦ n 6|= r , then:

for each action L in the body of r , n′ = n∪{LD} is a child of n
the edge from n to n′ is labeled by r

Lemma

This tree is finite.

Every consistent leaf is a weak repair for I and η.

Every repair for I and η corresponds to a leaf in the tree.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Finding weak repairs is NP-complete, our version

Tree algorithm

Build a tree (the repair tree for I and η) as follows.

1 The root is ∅
2 For each consistent node n and rule r , if I ◦ n 6|= r , then:

for each action L in the body of r , n′ = n∪{LD} is a child of n

the edge from n to n′ is labeled by r

Lemma

This tree is finite.

Every consistent leaf is a weak repair for I and η.

Every repair for I and η corresponds to a leaf in the tree.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Finding weak repairs is NP-complete, our version

Tree algorithm

Build a tree (the repair tree for I and η) as follows.

1 The root is ∅
2 For each consistent node n and rule r , if I ◦ n 6|= r , then:

for each action L in the body of r , n′ = n∪{LD} is a child of n
the edge from n to n′ is labeled by r

Lemma

This tree is finite.

Every consistent leaf is a weak repair for I and η.

Every repair for I and η corresponds to a leaf in the tree.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Finding weak repairs is NP-complete, our version

Tree algorithm

Build a tree (the repair tree for I and η) as follows.

1 The root is ∅
2 For each consistent node n and rule r , if I ◦ n 6|= r , then:

for each action L in the body of r , n′ = n∪{LD} is a child of n
the edge from n to n′ is labeled by r

Lemma

This tree is finite.

Every consistent leaf is a weak repair for I and η.

Every repair for I and η corresponds to a leaf in the tree.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Finding weak repairs is NP-complete, our version

Tree algorithm

Build a tree (the repair tree for I and η) as follows.

1 The root is ∅
2 For each consistent node n and rule r , if I ◦ n 6|= r , then:

for each action L in the body of r , n′ = n∪{LD} is a child of n
the edge from n to n′ is labeled by r

Lemma

This tree is finite.

Every consistent leaf is a weak repair for I and η.

Every repair for I and η corresponds to a leaf in the tree.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Finding weak repairs is NP-complete, our version

Tree algorithm

Build a tree (the repair tree for I and η) as follows.

1 The root is ∅
2 For each consistent node n and rule r , if I ◦ n 6|= r , then:

for each action L in the body of r , n′ = n∪{LD} is a child of n
the edge from n to n′ is labeled by r

Lemma

This tree is finite.

Every consistent leaf is a weak repair for I and η.

Every repair for I and η corresponds to a leaf in the tree.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Repair trees find all repairs

Lemma

Every repair for I and η corresponds to a leaf in the tree.

Proof.

Let U be a repair. If U is a node in the tree, then U is a leaf.
We show that we can find a branch U0 = ∅,U1, . . . ,Un in the tree
such that Ui ⊆ U and Un = U .
If Ui is a weak repair, then Ui = U , otherwise U is not a repair.
Assume that is not the case. Then I ◦ Ui 6|= r for some rule r . If
the body of r does not contain literals fixed by update actions in
U \ Ui , then I ◦ U 6|= r , which is absurd. Therefore there is a
descendant Ui+1 of Ui such that Ui+1 ⊆ U .
Since U is finite, this construction must end at U .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Repair trees find all repairs

Lemma

Every repair for I and η corresponds to a leaf in the tree.

Proof.

Let U be a repair. If U is a node in the tree, then U is a leaf.

We show that we can find a branch U0 = ∅,U1, . . . ,Un in the tree
such that Ui ⊆ U and Un = U .
If Ui is a weak repair, then Ui = U , otherwise U is not a repair.
Assume that is not the case. Then I ◦ Ui 6|= r for some rule r . If
the body of r does not contain literals fixed by update actions in
U \ Ui , then I ◦ U 6|= r , which is absurd. Therefore there is a
descendant Ui+1 of Ui such that Ui+1 ⊆ U .
Since U is finite, this construction must end at U .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Repair trees find all repairs

Lemma

Every repair for I and η corresponds to a leaf in the tree.

Proof.

Let U be a repair. If U is a node in the tree, then U is a leaf.
We show that we can find a branch U0 = ∅,U1, . . . ,Un in the tree
such that Ui ⊆ U and Un = U .

If Ui is a weak repair, then Ui = U , otherwise U is not a repair.
Assume that is not the case. Then I ◦ Ui 6|= r for some rule r . If
the body of r does not contain literals fixed by update actions in
U \ Ui , then I ◦ U 6|= r , which is absurd. Therefore there is a
descendant Ui+1 of Ui such that Ui+1 ⊆ U .
Since U is finite, this construction must end at U .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Repair trees find all repairs

Lemma

Every repair for I and η corresponds to a leaf in the tree.

Proof.

Let U be a repair. If U is a node in the tree, then U is a leaf.
We show that we can find a branch U0 = ∅,U1, . . . ,Un in the tree
such that Ui ⊆ U and Un = U .
If Ui is a weak repair, then Ui = U , otherwise U is not a repair.

Assume that is not the case. Then I ◦ Ui 6|= r for some rule r . If
the body of r does not contain literals fixed by update actions in
U \ Ui , then I ◦ U 6|= r , which is absurd. Therefore there is a
descendant Ui+1 of Ui such that Ui+1 ⊆ U .
Since U is finite, this construction must end at U .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Repair trees find all repairs

Lemma

Every repair for I and η corresponds to a leaf in the tree.

Proof.

Let U be a repair. If U is a node in the tree, then U is a leaf.
We show that we can find a branch U0 = ∅,U1, . . . ,Un in the tree
such that Ui ⊆ U and Un = U .
If Ui is a weak repair, then Ui = U , otherwise U is not a repair.
Assume that is not the case.

Then I ◦ Ui 6|= r for some rule r . If
the body of r does not contain literals fixed by update actions in
U \ Ui , then I ◦ U 6|= r , which is absurd. Therefore there is a
descendant Ui+1 of Ui such that Ui+1 ⊆ U .
Since U is finite, this construction must end at U .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Repair trees find all repairs

Lemma

Every repair for I and η corresponds to a leaf in the tree.

Proof.

Let U be a repair. If U is a node in the tree, then U is a leaf.
We show that we can find a branch U0 = ∅,U1, . . . ,Un in the tree
such that Ui ⊆ U and Un = U .
If Ui is a weak repair, then Ui = U , otherwise U is not a repair.
Assume that is not the case. Then I ◦ Ui 6|= r for some rule r .

If
the body of r does not contain literals fixed by update actions in
U \ Ui , then I ◦ U 6|= r , which is absurd. Therefore there is a
descendant Ui+1 of Ui such that Ui+1 ⊆ U .
Since U is finite, this construction must end at U .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Repair trees find all repairs

Lemma

Every repair for I and η corresponds to a leaf in the tree.

Proof.

Let U be a repair. If U is a node in the tree, then U is a leaf.
We show that we can find a branch U0 = ∅,U1, . . . ,Un in the tree
such that Ui ⊆ U and Un = U .
If Ui is a weak repair, then Ui = U , otherwise U is not a repair.
Assume that is not the case. Then I ◦ Ui 6|= r for some rule r . If
the body of r does not contain literals fixed by update actions in
U \ Ui , then I ◦ U 6|= r , which is absurd.

Therefore there is a
descendant Ui+1 of Ui such that Ui+1 ⊆ U .
Since U is finite, this construction must end at U .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Repair trees find all repairs

Lemma

Every repair for I and η corresponds to a leaf in the tree.

Proof.

Let U be a repair. If U is a node in the tree, then U is a leaf.
We show that we can find a branch U0 = ∅,U1, . . . ,Un in the tree
such that Ui ⊆ U and Un = U .
If Ui is a weak repair, then Ui = U , otherwise U is not a repair.
Assume that is not the case. Then I ◦ Ui 6|= r for some rule r . If
the body of r does not contain literals fixed by update actions in
U \ Ui , then I ◦ U 6|= r , which is absurd. Therefore there is a
descendant Ui+1 of Ui such that Ui+1 ⊆ U .

Since U is finite, this construction must end at U .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Repair trees find all repairs

Lemma

Every repair for I and η corresponds to a leaf in the tree.

Proof.

Let U be a repair. If U is a node in the tree, then U is a leaf.
We show that we can find a branch U0 = ∅,U1, . . . ,Un in the tree
such that Ui ⊆ U and Un = U .
If Ui is a weak repair, then Ui = U , otherwise U is not a repair.
Assume that is not the case. Then I ◦ Ui 6|= r for some rule r . If
the body of r does not contain literals fixed by update actions in
U \ Ui , then I ◦ U 6|= r , which is absurd. Therefore there is a
descendant Ui+1 of Ui such that Ui+1 ⊆ U .
Since U is finite, this construction must end at U .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Optimizations

The repair tree can be significantly pruned, e.g. by identifying
nodes that correspond to the same set of actions.

Inconsistent nodes may also be left out.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Optimizations

The repair tree can be significantly pruned, e.g. by identifying
nodes that correspond to the same set of actions.

Inconsistent nodes may also be left out.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Optimizations

The repair tree can be significantly pruned, e.g. by identifying
nodes that correspond to the same set of actions.

Inconsistent nodes may also be left out.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Founded and justified repairs

4 Future directions

5 Conclusions

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Founded repairs I

The notion of repair ignores the head of the AIC.

Definition

An action α is founded w.r.t. I , η and U if there is a rule r such
that:

α occurs in the head of r

I ◦ U satisfies all literals in the body of r except for αD

Definition

A set U is founded w.r.t. I and η if every update action in U is
founded w.r.t. I , η and U .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Founded repairs I

The notion of repair ignores the head of the AIC.

Definition

An action α is founded w.r.t. I , η and U if there is a rule r such
that:

α occurs in the head of r

I ◦ U satisfies all literals in the body of r except for αD

Definition

A set U is founded w.r.t. I and η if every update action in U is
founded w.r.t. I , η and U .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Founded repairs I

The notion of repair ignores the head of the AIC.

Definition

An action α is founded w.r.t. I , η and U if there is a rule r such
that:

α occurs in the head of r

I ◦ U satisfies all literals in the body of r except for αD

Definition

A set U is founded w.r.t. I and η if every update action in U is
founded w.r.t. I , η and U .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Founded repairs I

The notion of repair ignores the head of the AIC.

Definition

An action α is founded w.r.t. I , η and U if there is a rule r such
that:

α occurs in the head of r

I ◦ U satisfies all literals in the body of r except for αD

Definition

A set U is founded w.r.t. I and η if every update action in U is
founded w.r.t. I , η and U .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Founded repairs I

The notion of repair ignores the head of the AIC.

Definition

An action α is founded w.r.t. I , η and U if there is a rule r such
that:

α occurs in the head of r

I ◦ U satisfies all literals in the body of r except for αD

Definition

A set U is founded w.r.t. I and η if every update action in U is
founded w.r.t. I , η and U .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Founded repairs II

In other words, if U is founded, then removing an action from U
causes some AIC to be violated.

Definition

A founded (weak) repair is a (weak) repair that is founded.

Catch

A founded repair is not a minimal founded weak repair.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Founded repairs II

In other words, if U is founded, then removing an action from U
causes some AIC to be violated.

Definition

A founded (weak) repair is a (weak) repair that is founded.

Catch

A founded repair is not a minimal founded weak repair.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Founded repairs II

In other words, if U is founded, then removing an action from U
causes some AIC to be violated.

Definition

A founded (weak) repair is a (weak) repair that is founded.

Catch

A founded repair is not a minimal founded weak repair.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Computing founded repairs

Example

Take I = {a, b} and

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

Following the heads of the violated rules, we obtain:

But so is {−a,−b}. . .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Computing founded repairs

Example

Take I = {a, b} and

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

Following the heads of the violated rules, we obtain:

∅

But so is {−a,−b}. . .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Computing founded repairs

Example

Take I = {a, b} and

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

Following the heads of the violated rules, we obtain:

∅
r3

}}
{+c}

But so is {−a,−b}. . .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Computing founded repairs

Example

Take I = {a, b} and

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

Following the heads of the violated rules, we obtain:

∅
r3

}}

r4

!!
{+c} {+c}

But so is {−a,−b}. . .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Computing founded repairs

Example

Take I = {a, b} and

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

Following the heads of the violated rules, we obtain:

{+c} is a founded repair.

But so is {−a,−b}. . .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Computing founded repairs

Example

Take I = {a, b} and

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

Following the heads of the violated rules, we obtain:

{+c} is a founded repair.

But so is {−a,−b}. . .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Computing founded repairs

The problematic rules

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

The problem is that in {−a,−b} we have a circularity of support.

With this in mind, the Caroprese et al. introduced justified repairs.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Computing founded repairs

The problematic rules

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

The problem is that in {−a,−b} we have a circularity of support.

With this in mind, the Caroprese et al. introduced justified repairs.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Computing founded repairs

The problematic rules

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

The problem is that in {−a,−b} we have a circularity of support.

With this in mind, the Caroprese et al. introduced justified repairs.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repairs

Definition

U is closed under r if U contains an action in the head of r
whenever U satisfies the non-updatable literals in r .

An action is a no-effect action w.r.t. I and U if it does not
change I or I ◦ U .

U is a justified action set w.r.t. I and η if U is a minimal set
of update actions containing all no-effect actions w.r.t. I and
U and closed under η.

U is a justified weak repair for I and η if U ∪ ne(I,U) is a
justified action set.

Why?

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repairs

Definition

U is closed under r if U contains an action in the head of r
whenever U satisfies the non-updatable literals in r .

An action is a no-effect action w.r.t. I and U if it does not
change I or I ◦ U .

U is a justified action set w.r.t. I and η if U is a minimal set
of update actions containing all no-effect actions w.r.t. I and
U and closed under η.

U is a justified weak repair for I and η if U ∪ ne(I,U) is a
justified action set.

Why?

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repairs

Definition

U is closed under r if U contains an action in the head of r
whenever U satisfies the non-updatable literals in r .

An action is a no-effect action w.r.t. I and U if it does not
change I or I ◦ U .

U is a justified action set w.r.t. I and η if U is a minimal set
of update actions containing all no-effect actions w.r.t. I and
U and closed under η.

U is a justified weak repair for I and η if U ∪ ne(I,U) is a
justified action set.

Why?

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repairs

Definition

U is closed under r if U contains an action in the head of r
whenever U satisfies the non-updatable literals in r .

An action is a no-effect action w.r.t. I and U if it does not
change I or I ◦ U .

U is a justified action set w.r.t. I and η if U is a minimal set
of update actions containing all no-effect actions w.r.t. I and
U and closed under η.

U is a justified weak repair for I and η if U ∪ ne(I,U) is a
justified action set.

Why?

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repairs

Definition

U is closed under r if U contains an action in the head of r
whenever U satisfies the non-updatable literals in r .

An action is a no-effect action w.r.t. I and U if it does not
change I or I ◦ U .

U is a justified action set w.r.t. I and η if U is a minimal set
of update actions containing all no-effect actions w.r.t. I and
U and closed under η.

U is a justified weak repair for I and η if U ∪ ne(I,U) is a
justified action set.

Why?

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Not even intuitive. . .

Eliminates some stuff. . .

Take I = {a, b} and

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

Now {−a,−b} is a founded repair that is not justified.

. . . but actually too much.

Take I = {a, b} and

r1 : a, b ⊃ −a r2 : a, not b ⊃ −a r3 : not a, b ⊃ −b

Again {−a,−b} is a founded repair that is not justified.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Not even intuitive. . .

Eliminates some stuff. . .

Take I = {a, b} and

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

Now {−a,−b} is a founded repair that is not justified.

. . . but actually too much.

Take I = {a, b} and

r1 : a, b ⊃ −a r2 : a, not b ⊃ −a r3 : not a, b ⊃ −b

Again {−a,−b} is a founded repair that is not justified.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Not even intuitive. . .

Eliminates some stuff. . .

Take I = {a, b} and

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

Now {−a,−b} is a founded repair that is not justified.

. . . but actually too much.

Take I = {a, b} and

r1 : a, b ⊃ −a r2 : a, not b ⊃ −a r3 : not a, b ⊃ −b

Again {−a,−b} is a founded repair that is not justified.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Not even intuitive. . .

Eliminates some stuff. . .

Take I = {a, b} and

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

Now {−a,−b} is a founded repair that is not justified.

. . . but actually too much.

Take I = {a, b} and

r1 : a, b ⊃ −a r2 : a, not b ⊃ −a r3 : not a, b ⊃ −b

Again {−a,−b} is a founded repair that is not justified.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees I

We can adapt the repair tree as follows.

Modified tree algorithm

Each node n is a pair of sets of repair actions Un,Jn.

The root of the tree is ∅, ∅.
The edges are labeled as before.

For each node n and rule r , if I ◦ Un 6|= r , then each α in the
head of r yields a descendant n′ of n with:

Un′ = Un ∪ {α};
Jn′ = (Jn ∪ {nup(r)}) \ Un.
If Un′ is inconsistent, then n′ is removed.
If Un′ ∩ (Jn′)D 6= ∅, then n′ is removed.

Motivation

Keep track of the non-updatable atoms in the rules that were used.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees I

We can adapt the repair tree as follows.

Modified tree algorithm

Each node n is a pair of sets of repair actions Un,Jn.

The root of the tree is ∅, ∅.
The edges are labeled as before.

For each node n and rule r , if I ◦ Un 6|= r , then each α in the
head of r yields a descendant n′ of n with:

Un′ = Un ∪ {α};
Jn′ = (Jn ∪ {nup(r)}) \ Un.
If Un′ is inconsistent, then n′ is removed.
If Un′ ∩ (Jn′)D 6= ∅, then n′ is removed.

Motivation

Keep track of the non-updatable atoms in the rules that were used.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees I

We can adapt the repair tree as follows.

Modified tree algorithm

Each node n is a pair of sets of repair actions Un,Jn.

The root of the tree is ∅, ∅.

The edges are labeled as before.

For each node n and rule r , if I ◦ Un 6|= r , then each α in the
head of r yields a descendant n′ of n with:

Un′ = Un ∪ {α};
Jn′ = (Jn ∪ {nup(r)}) \ Un.
If Un′ is inconsistent, then n′ is removed.
If Un′ ∩ (Jn′)D 6= ∅, then n′ is removed.

Motivation

Keep track of the non-updatable atoms in the rules that were used.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees I

We can adapt the repair tree as follows.

Modified tree algorithm

Each node n is a pair of sets of repair actions Un,Jn.

The root of the tree is ∅, ∅.
The edges are labeled as before.

For each node n and rule r , if I ◦ Un 6|= r , then each α in the
head of r yields a descendant n′ of n with:

Un′ = Un ∪ {α};
Jn′ = (Jn ∪ {nup(r)}) \ Un.
If Un′ is inconsistent, then n′ is removed.
If Un′ ∩ (Jn′)D 6= ∅, then n′ is removed.

Motivation

Keep track of the non-updatable atoms in the rules that were used.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees I

We can adapt the repair tree as follows.

Modified tree algorithm

Each node n is a pair of sets of repair actions Un,Jn.

The root of the tree is ∅, ∅.
The edges are labeled as before.

For each node n and rule r , if I ◦ Un 6|= r , then each α in the
head of r yields a descendant n′ of n with:

Un′ = Un ∪ {α};
Jn′ = (Jn ∪ {nup(r)}) \ Un.
If Un′ is inconsistent, then n′ is removed.
If Un′ ∩ (Jn′)D 6= ∅, then n′ is removed.

Motivation

Keep track of the non-updatable atoms in the rules that were used.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees I

We can adapt the repair tree as follows.

Modified tree algorithm

Each node n is a pair of sets of repair actions Un,Jn.

The root of the tree is ∅, ∅.
The edges are labeled as before.

For each node n and rule r , if I ◦ Un 6|= r , then each α in the
head of r yields a descendant n′ of n with:

Un′ = Un ∪ {α};

Jn′ = (Jn ∪ {nup(r)}) \ Un.
If Un′ is inconsistent, then n′ is removed.
If Un′ ∩ (Jn′)D 6= ∅, then n′ is removed.

Motivation

Keep track of the non-updatable atoms in the rules that were used.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees I

We can adapt the repair tree as follows.

Modified tree algorithm

Each node n is a pair of sets of repair actions Un,Jn.

The root of the tree is ∅, ∅.
The edges are labeled as before.

For each node n and rule r , if I ◦ Un 6|= r , then each α in the
head of r yields a descendant n′ of n with:

Un′ = Un ∪ {α};
Jn′ = (Jn ∪ {nup(r)}) \ Un.

If Un′ is inconsistent, then n′ is removed.
If Un′ ∩ (Jn′)D 6= ∅, then n′ is removed.

Motivation

Keep track of the non-updatable atoms in the rules that were used.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees I

We can adapt the repair tree as follows.

Modified tree algorithm

Each node n is a pair of sets of repair actions Un,Jn.

The root of the tree is ∅, ∅.
The edges are labeled as before.

For each node n and rule r , if I ◦ Un 6|= r , then each α in the
head of r yields a descendant n′ of n with:

Un′ = Un ∪ {α};
Jn′ = (Jn ∪ {nup(r)}) \ Un.
If Un′ is inconsistent, then n′ is removed.

If Un′ ∩ (Jn′)D 6= ∅, then n′ is removed.

Motivation

Keep track of the non-updatable atoms in the rules that were used.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees I

We can adapt the repair tree as follows.

Modified tree algorithm

Each node n is a pair of sets of repair actions Un,Jn.

The root of the tree is ∅, ∅.
The edges are labeled as before.

For each node n and rule r , if I ◦ Un 6|= r , then each α in the
head of r yields a descendant n′ of n with:

Un′ = Un ∪ {α};
Jn′ = (Jn ∪ {nup(r)}) \ Un.
If Un′ is inconsistent, then n′ is removed.
If Un′ ∩ (Jn′)D 6= ∅, then n′ is removed.

Motivation

Keep track of the non-updatable atoms in the rules that were used.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees I

We can adapt the repair tree as follows.

Modified tree algorithm

Each node n is a pair of sets of repair actions Un,Jn.

The root of the tree is ∅, ∅.
The edges are labeled as before.

For each node n and rule r , if I ◦ Un 6|= r , then each α in the
head of r yields a descendant n′ of n with:

Un′ = Un ∪ {α};
Jn′ = (Jn ∪ {nup(r)}) \ Un.
If Un′ is inconsistent, then n′ is removed.
If Un′ ∩ (Jn′)D 6= ∅, then n′ is removed.

Motivation

Keep track of the non-updatable atoms in the rules that were used.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees II

Example

Take I = {a, b} and

r1 : a, b ⊃ −a r2 : a, not b ⊃ −a r3 : not a, b ⊃ −b

Corresponding justified repair tree:

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees II

Example

Take I = {a, b} and

r1 : a, b ⊃ −a r2 : a, not b ⊃ −a r3 : not a, b ⊃ −b

Corresponding justified repair tree:

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees II

Example

Take I = {a, b} and

r1 : a, b ⊃ −a r2 : a, not b ⊃ −a r3 : not a, b ⊃ −b

Corresponding justified repair tree:

∅, ∅

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees II

Example

Take I = {a, b} and

r1 : a, b ⊃ −a r2 : a, not b ⊃ −a r3 : not a, b ⊃ −b

Corresponding justified repair tree:

∅, ∅
r1��

{−a}, {+b}

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees II

Example

Take I = {a, b} and

r1 : a, b ⊃ −a r2 : a, not b ⊃ −a r3 : not a, b ⊃ −b

Corresponding justified repair tree:

∅, ∅
r1��

{−a}, {+b}
r3��

{−a,−b}, {+b}
×

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees III

Theorem

Let U be a justified repair for I and η. Then there is a leaf n in
the justified repair tree for I and η such that Un = U .

Catch

Deciding whether there is a justified repair for I and η is
Σ2
P -complete. Therefore sometimes there must be nodes in the

tree that do not correspond to justified (weak) repairs.

† at least if you believe that NP 6= Σ2
P . (We do.)

Checking that a repair is justified is again NP-complete, so our
algorithm is (asymptotically) optimal.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees III

Theorem

Let U be a justified repair for I and η. Then there is a leaf n in
the justified repair tree for I and η such that Un = U .

Catch

Deciding whether there is a justified repair for I and η is
Σ2
P -complete.

Therefore sometimes there must be nodes in the
tree that do not correspond to justified (weak) repairs.

† at least if you believe that NP 6= Σ2
P . (We do.)

Checking that a repair is justified is again NP-complete, so our
algorithm is (asymptotically) optimal.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees III

Theorem

Let U be a justified repair for I and η. Then there is a leaf n in
the justified repair tree for I and η such that Un = U .

Catch

Deciding whether there is a justified repair for I and η is
Σ2
P -complete (NP-complete in the presence of an NP-complete

oracle).

Therefore sometimes there must be nodes in the tree that
do not correspond to justified (weak) repairs.

† at least if you believe that NP 6= Σ2
P . (We do.)

Checking that a repair is justified is again NP-complete, so our
algorithm is (asymptotically) optimal.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees III

Theorem

Let U be a justified repair for I and η. Then there is a leaf n in
the justified repair tree for I and η such that Un = U .

Catch

Deciding whether there is a justified repair for I and η is
Σ2
P -complete. Therefore sometimes there must be nodes in the

tree that do not correspond to justified (weak) repairs.

† at least if you believe that NP 6= Σ2
P . (We do.)

Checking that a repair is justified is again NP-complete, so our
algorithm is (asymptotically) optimal.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees III

Theorem

Let U be a justified repair for I and η. Then there is a leaf n in
the justified repair tree for I and η such that Un = U .

Catch

Deciding whether there is a justified repair for I and η is
Σ2
P -complete. Therefore sometimes there must† be nodes in the

tree that do not correspond to justified (weak) repairs.

† at least if you believe that NP 6= Σ2
P .

(We do.)
Checking that a repair is justified is again NP-complete, so our
algorithm is (asymptotically) optimal.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees III

Theorem

Let U be a justified repair for I and η. Then there is a leaf n in
the justified repair tree for I and η such that Un = U .

Catch

Deciding whether there is a justified repair for I and η is
Σ2
P -complete. Therefore sometimes there must† be nodes in the

tree that do not correspond to justified (weak) repairs.

† at least if you believe that NP 6= Σ2
P . (We do.)

Checking that a repair is justified is again NP-complete, so our
algorithm is (asymptotically) optimal.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Justified repair trees III

Theorem

Let U be a justified repair for I and η. Then there is a leaf n in
the justified repair tree for I and η such that Un = U .

Catch

Deciding whether there is a justified repair for I and η is
Σ2
P -complete. Therefore sometimes there must† be nodes in the

tree that do not correspond to justified (weak) repairs.

† at least if you believe that NP 6= Σ2
P . (We do.)

Checking that a repair is justified is again NP-complete, so our
algorithm is (asymptotically) optimal.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Normalized AICs

Definition

An AIC is normalized if its head only contains one action.

Lemma (Caroprese et al.)

If η is a set of normalized AICs, then existence of justified repairs
for I and η is NP-complete.

Theorem

If η is a set of normalized AICs, then every leaf of the justified
repair tree for I and η corresponds to a justified repair for I and η.

We also believe that our algorithm is nicer than the one given by
Caroprese et al. It was developed following the intuitive semantics
of AICs.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Normalized AICs

Definition

An AIC is normalized if its head only contains one action.

Lemma (Caroprese et al.)

If η is a set of normalized AICs, then existence of justified repairs
for I and η is NP-complete.

Theorem

If η is a set of normalized AICs, then every leaf of the justified
repair tree for I and η corresponds to a justified repair for I and η.

We also believe that our algorithm is nicer than the one given by
Caroprese et al. It was developed following the intuitive semantics
of AICs.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Normalized AICs

Definition

An AIC is normalized if its head only contains one action.

Lemma (Caroprese et al.)

If η is a set of normalized AICs, then existence of justified repairs
for I and η is NP-complete.

Theorem

If η is a set of normalized AICs, then every leaf of the justified
repair tree for I and η corresponds to a justified repair for I and η.

We also believe that our algorithm is nicer than the one given by
Caroprese et al. It was developed following the intuitive semantics
of AICs.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Normalized AICs

Definition

An AIC is normalized if its head only contains one action.

Lemma (Caroprese et al.)

If η is a set of normalized AICs, then existence of justified repairs
for I and η is NP-complete.

Theorem

If η is a set of normalized AICs, then every leaf of the justified
repair tree for I and η corresponds to a justified repair for I and η.

We also believe that our algorithm is nicer than the one given by
Caroprese et al.

It was developed following the intuitive semantics
of AICs.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Normalized AICs

Definition

An AIC is normalized if its head only contains one action.

Lemma (Caroprese et al.)

If η is a set of normalized AICs, then existence of justified repairs
for I and η is NP-complete.

Theorem

If η is a set of normalized AICs, then every leaf of the justified
repair tree for I and η corresponds to a justified repair for I and η.

We also believe that our algorithm is nicer than the one given by
Caroprese et al. It was developed following the intuitive semantics
of AICs.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Founded and justified repairs

4 Future directions

5 Conclusions

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Optimizing the algorithms

The complexity of these algorithms depends mainly on the size
of η.

Splitting η in independent components can help parallelizing the
search for repairs.

If one is interested in finding only one (justified) repair, search
techniques can speed up the process.

Next step

Implementing, testing and improving these algorithms

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Optimizing the algorithms

The complexity of these algorithms depends mainly on the size
of η.

Splitting η in independent components can help parallelizing the
search for repairs.

If one is interested in finding only one (justified) repair, search
techniques can speed up the process.

Next step

Implementing, testing and improving these algorithms

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Optimizing the algorithms

The complexity of these algorithms depends mainly on the size
of η.

Splitting η in independent components can help parallelizing the
search for repairs.

If one is interested in finding only one (justified) repair, search
techniques can speed up the process.

Next step

Implementing, testing and improving these algorithms

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Optimizing the algorithms

The complexity of these algorithms depends mainly on the size
of η.

Splitting η in independent components can help parallelizing the
search for repairs.

If one is interested in finding only one (justified) repair, search
techniques can speed up the process.

Next step

Implementing, testing and improving these algorithms

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Optimizing the algorithms

The complexity of these algorithms depends mainly on the size
of η.

Splitting η in independent components can help parallelizing the
search for repairs.

If one is interested in finding only one (justified) repair, search
techniques can speed up the process.

Next step

Implementing, testing and improving these algorithms

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Outside the database world

We are interested in more general knowledge bases.

Definition

A generalized AIC over some logic L is a rule ϕ ⊃ α where:

ϕ is a decidable condition over L
α is an action “fixing” ϕ (i.e. executing α guarantees that ϕ
does not hold)

This is no longer a purely syntactical notion.

Justified repairs make no sense in this setting. . .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Outside the database world

We are interested in more general knowledge bases.

Definition

A generalized AIC over some logic L is a rule ϕ ⊃ α where:

ϕ is a decidable condition over L
α is an action “fixing” ϕ (i.e. executing α guarantees that ϕ
does not hold)

This is no longer a purely syntactical notion.

Justified repairs make no sense in this setting. . .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Outside the database world

We are interested in more general knowledge bases, e.g. description
logic knowledge bases; OWL ontologies.

Definition

A generalized AIC over some logic L is a rule ϕ ⊃ α where:

ϕ is a decidable condition over L
α is an action “fixing” ϕ (i.e. executing α guarantees that ϕ
does not hold)

This is no longer a purely syntactical notion.

Justified repairs make no sense in this setting. . .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Outside the database world

We are interested in more general knowledge bases, e.g. description
logic knowledge bases; OWL ontologies.

Definition

A generalized AIC over some logic L is a rule ϕ ⊃ α where:

ϕ is a decidable condition over L
α is an action “fixing” ϕ (i.e. executing α guarantees that ϕ
does not hold)

This is no longer a purely syntactical notion.

Justified repairs make no sense in this setting. . .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Outside the database world

We are interested in more general knowledge bases, e.g. description
logic knowledge bases; OWL ontologies.

Definition

A generalized AIC over some logic L is a rule ϕ ⊃ α where:

ϕ is a decidable condition over L

α is an action “fixing” ϕ (i.e. executing α guarantees that ϕ
does not hold)

This is no longer a purely syntactical notion.

Justified repairs make no sense in this setting. . .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Outside the database world

We are interested in more general knowledge bases, e.g. description
logic knowledge bases; OWL ontologies.

Definition

A generalized AIC over some logic L is a rule ϕ ⊃ α where:

ϕ is a decidable condition over L
α is an action “fixing” ϕ (i.e. executing α guarantees that ϕ
does not hold)

This is no longer a purely syntactical notion.

Justified repairs make no sense in this setting. . .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Outside the database world

We are interested in more general knowledge bases, e.g. description
logic knowledge bases; OWL ontologies.

Definition

A generalized AIC over some logic L is a rule ϕ ⊃ α where:

ϕ is a decidable condition over L
α is an action “fixing” ϕ (i.e. executing α guarantees that ϕ
does not hold)

This is no longer a purely syntactical notion.

Justified repairs make no sense in this setting. . .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Outside the database world

We are interested in more general knowledge bases, e.g. description
logic knowledge bases; OWL ontologies.

Definition

A generalized AIC over some logic L is a rule ϕ ⊃ α where:

ϕ is a decidable condition over L
α is an action “fixing” ϕ (i.e. executing α guarantees that ϕ
does not hold)

This is no longer a purely syntactical notion.

Justified repairs make no sense in this setting. . .

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Well-founded repair trees I

Definition

In the database/AIC setting, the well-founded repair tree for I and
η is built like the justified repair tree, but omitting the sets Jn.

Definition (Equivalent)

In the database/AIC setting, the well-founded repair tree for I and
η is built like the repair tree, but using only the actions in the head
of rules.

New notion of repair

This tree computes all justified repairs and some founded (weak)
repairs, but eliminates true circularity of support.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Well-founded repair trees I

Definition

In the database/AIC setting, the well-founded repair tree for I and
η is built like the justified repair tree, but omitting the sets Jn.

Definition (Equivalent)

In the database/AIC setting, the well-founded repair tree for I and
η is built like the repair tree, but using only the actions in the head
of rules.

New notion of repair

This tree computes all justified repairs and some founded (weak)
repairs, but eliminates true circularity of support.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Well-founded repair trees I

Definition

In the database/AIC setting, the well-founded repair tree for I and
η is built like the justified repair tree, but omitting the sets Jn.

Definition (Equivalent)

In the database/AIC setting, the well-founded repair tree for I and
η is built like the repair tree, but using only the actions in the head
of rules.

New notion of repair

This tree computes all justified repairs and some founded (weak)
repairs, but eliminates true circularity of support.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Well-founded repair trees II

Well-founded repair trees generalize nicely to outside the database
world.

Next steps

1 Formalize the notion of generalized AIC and study it in
particular settings.

2 Characterize the (weak) repairs computed by the well-founded
repair tree in this new setting.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Well-founded repair trees II

Well-founded repair trees generalize nicely to outside the database
world.

Next steps

1 Formalize the notion of generalized AIC and study it in
particular settings.

2 Characterize the (weak) repairs computed by the well-founded
repair tree in this new setting.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Well-founded repair trees II

Well-founded repair trees generalize nicely to outside the database
world.

Next steps

1 Formalize the notion of generalized AIC and study it in
particular settings.

2 Characterize the (weak) repairs computed by the well-founded
repair tree in this new setting.

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Founded and justified repairs

4 Future directions

5 Conclusions

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

What we achieved. . .

Operational semantics for active integrity constraints

Tree algorithms for repairs and justified repairs

More fine-grained distinction between founded and justified
repairs

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

What we achieved. . .

Operational semantics for active integrity constraints

Tree algorithms for repairs and justified repairs

More fine-grained distinction between founded and justified
repairs

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

What we achieved. . .

Operational semantics for active integrity constraints

Tree algorithms for repairs and justified repairs

More fine-grained distinction between founded and justified
repairs

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

What we achieved. . .

Operational semantics for active integrity constraints

Tree algorithms for repairs and justified repairs

More fine-grained distinction between founded and justified
repairs

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

. . . and what we still hope to do

Optimization of the tree algorithms, through parallelization

Generalizations outside the database world

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

. . . and what we still hope to do

Optimization of the tree algorithms, through parallelization

Generalizations outside the database world

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

. . . and what we still hope to do

Optimization of the tree algorithms, through parallelization

Generalizations outside the database world

Integrity constraints Active integrity constraints Founded and justified repairs Future directions Conclusions

Thank you.

	Integrity constraints
	Active integrity constraints
	Founded and justified repairs
	Future directions
	Conclusions

