
Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Optimizing the Search for Repairs from Active
Integrity Constraints

Lúıs Cruz-Filipe

Escola Superior Náutica Infante D. Henrique / CMAF / LabMAg (Portugal)

University of Southern Denmark
September 13th, 2013

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

The Problem

Databases typically pose conditions on data (“integrity
constraints”). . .

. . . but because of errors sometimes these conditions no longer
hold.

Question

How can we repair a database that no longer satisfies its integrity
constraints?

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

The Problem

Databases typically pose conditions on data (“integrity
constraints”). . .
. . . but because of errors sometimes these conditions no longer
hold.

Question

How can we repair a database that no longer satisfies its integrity
constraints?

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

The Problem

Databases typically pose conditions on data (“integrity
constraints”). . .
. . . but because of errors sometimes these conditions no longer
hold.

Question

How can we repair a database that no longer satisfies its integrity
constraints?

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Parallellization and stratification

4 Conclusions

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Parallellization and stratification

4 Conclusions

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Parallellization and stratification

4 Conclusions

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Parallellization and stratification

4 Conclusions

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Parallellization and stratification

4 Conclusions

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

A database of family relations

Consider a database with information on family relations.

Fact

siblingOf(John,Mary)

This database should also contain

Missing fact

siblingOf(Mary, John)

Integrity constraint (simple)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

A database of family relations

Consider a database with information on family relations.

Fact

siblingOf(John,Mary)

This database should also contain

Missing fact

siblingOf(Mary, John)

Integrity constraint (simple)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

A database of family relations

Consider a database with information on family relations.

Fact

siblingOf(John,Mary)

This database should also contain

Missing fact

siblingOf(Mary, John)

Integrity constraint (simple)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

A database of family relations

Consider a database with information on family relations.

Fact

siblingOf(John,Mary)

This database should also contain

Missing fact

siblingOf(Mary, John)

Integrity constraint (simple)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Can fix the problem automatically?

Inconsistency

siblingOf(John,Mary)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Solution

Add siblingOf(Mary, John)

. . . but is this so automatic?

Another solution

Remove siblingOf(John,Mary)

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Can fix the problem automatically?

Inconsistency

siblingOf(John,Mary)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Solution

Add siblingOf(Mary, John)

. . . but is this so automatic?

Another solution

Remove siblingOf(John,Mary)

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Can fix the problem automatically?

Inconsistency

siblingOf(John,Mary)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Solution

Add siblingOf(Mary, John)

. . . but is this so automatic?

Another solution

Remove siblingOf(John,Mary)

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Can fix the problem automatically?

Inconsistency

siblingOf(John,Mary)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Solution

Add siblingOf(Mary, John)

. . . but is this so automatic?

Another solution

Remove siblingOf(John,Mary)

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Parallellization and stratification

4 Conclusions

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Active integrity constraints

Motivation

Specify a constraint and propose possible solutions.

Works both ways:

may express preferences

may eliminate options

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Active integrity constraints

Motivation

Specify a constraint and propose possible solutions.

Works both ways:

may express preferences

may eliminate options

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Active integrity constraints

Motivation

Specify a constraint and propose possible solutions.

Works both ways:

may express preferences

may eliminate options

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Active integrity constraints

Motivation

Specify a constraint and propose possible solutions.

Works both ways:

may express preferences

may eliminate options

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Family relations, revisited

Integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Family relations, revisited

Integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Active integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ +siblingOf(y , x))

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Family relations, revisited

Integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Active integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ +siblingOf(y , x))

Active integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ −siblingOf(x , y))

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Family relations, revisited

Integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Active integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃
+ siblingOf(y , x) | −siblingOf(x , y))

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Active integrity constraints

Definition (Flesca2004)

An Active integrity constraint is a formula of the form

L1, . . . , Lm ⊃ α1 | . . . | αk

where {αD
1 , . . . , α

D
k } ⊆ {L1, . . . , Lm}.

A valid AIC

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ +siblingOf(y , x)

An invalid AIC

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ −siblingOf(x , y) | +Parent(x)

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Active integrity constraints

Definition (Flesca2004)

An Active integrity constraint is a formula of the form

L1, . . . , Lm ⊃ α1 | . . . | αk

where {αD
1 , . . . , α

D
k } ⊆ {L1, . . . , Lm}.

A valid AIC

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ +siblingOf(y , x)

An invalid AIC

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ −siblingOf(x , y) | +Parent(x)

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Active integrity constraints

Definition (Flesca2004)

An Active integrity constraint is a formula of the form

L1, . . . , Lm ⊃ α1 | . . . | αk

where {αD
1 , . . . , α

D
k } ⊆ {L1, . . . , Lm}.

A valid AIC

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ +siblingOf(y , x)

An invalid AIC

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ −siblingOf(x , y) | +Parent(x)

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Intuitive semantics of AICs

A generic AIC

L1, . . . , Lm ⊃ α1 | . . . | αk

conjunction on the left (“body”)

disjunction on the right (“head”)

semantics of (normal) implication

holds iff one of the Li s fails (but. . .)

{αD
1 , . . . , α

D
k } are updatable literals

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Intuitive semantics of AICs

A generic AIC

L1, . . . , Lm ⊃ α1 | . . . | αk

conjunction on the left (“body”)

disjunction on the right (“head”)

semantics of (normal) implication

holds iff one of the Li s fails (but. . .)

{αD
1 , . . . , α

D
k } are updatable literals

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Intuitive semantics of AICs

A generic AIC

L1, . . . , Lm ⊃ α1 | . . . | αk

conjunction on the left (“body”)

disjunction on the right (“head”)

semantics of (normal) implication

holds iff one of the Li s fails (but. . .)

{αD
1 , . . . , α

D
k } are updatable literals

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Intuitive semantics of AICs

A generic AIC

L1, . . . , Lm ⊃ α1 | . . . | αk

conjunction on the left (“body”)

disjunction on the right (“head”)

semantics of (normal) implication

holds iff one of the Li s fails (but. . .)

{αD
1 , . . . , α

D
k } are updatable literals

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Intuitive semantics of AICs

A generic AIC

L1, . . . , Lm ⊃ α1 | . . . | αk

conjunction on the left (“body”)

disjunction on the right (“head”)

semantics of (normal) implication

holds iff one of the Li s fails (but. . .)

{αD
1 , . . . , α

D
k } are updatable literals

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Intuitive semantics of AICs

A generic AIC

L1, . . . , Lm ⊃ α1 | . . . | αk

conjunction on the left (“body”)

disjunction on the right (“head”)

semantics of (normal) implication

holds iff one of the Li s fails (but. . .)

{αD
1 , . . . , α

D
k } are updatable literals

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Repairs

Definition (Caroprese et al., 2006)

Let I be a database and η be a set of (A)ICs. A weak repair for I
and η is a consistent set U of update actions such that:

U consists of essential actions only

I ◦ U |= η

(Beware of the notation.)

Definition

A repair is a weak repair that is minimal w.r.t. inclusion.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Repairs

Definition (Caroprese et al., 2006)

Let I be a database and η be a set of (A)ICs. A weak repair for I
and η is a consistent set U of update actions such that:

U consists of essential actions only

I ◦ U |= η

(Beware of the notation.)

Definition

A repair is a weak repair that is minimal w.r.t. inclusion.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Repairs

Definition (Caroprese et al., 2006)

Let I be a database and η be a set of (A)ICs. A weak repair for I
and η is a consistent set U of update actions such that:

U consists of essential actions only

I ◦ U |= η

(Beware of the notation.)

Definition

A repair is a weak repair that is minimal w.r.t. inclusion.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Repairs

Definition (Caroprese et al., 2006)

Let I be a database and η be a set of (A)ICs. A weak repair for I
and η is a consistent set U of update actions such that:

U consists of essential actions only

I ◦ U |= η

(Beware of the notation.)

Definition

A repair is a weak repair that is minimal w.r.t. inclusion.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Repairs

Definition (Caroprese et al., 2006)

Let I be a database and η be a set of (A)ICs. A weak repair for I
and η is a consistent set U of update actions such that:

U consists of essential actions only

I ◦ U |= η

(Beware of the notation.)

Definition

A repair is a weak repair that is minimal w.r.t. inclusion.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Family relations, yet again

Inconsistency

siblingOf(John,Mary)

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ +siblingOf(y , x)

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Family relations, yet again

Inconsistency

siblingOf(John,Mary)

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ +siblingOf(y , x)

A repair

+siblingOf(Mary, John)

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Family relations, yet again

Inconsistency

siblingOf(John,Mary)

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ +siblingOf(y , x)

Another repair

−siblingOf(John,Mary)

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Family relations, yet again

Inconsistency

siblingOf(John,Mary)

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ +siblingOf(y , x)

A weak repair

+siblingOf(Mary, John),+Parent(John)

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Family relations, yet again

Inconsistency

siblingOf(John,Mary)

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ +siblingOf(y , x)

Not a weak repair

+siblingOf(Mary, John),−siblingOf(John,Mary)

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Finding repairs

Algorithm

1 Choose a set U of update actions (based on I)

2 Compute I ◦ U
3 Check if all AICs in η hold

Each step can be done in polynomial time on I and η.

Finding weak repairs is NP-complete.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Finding repairs

Algorithm

1 Choose a set U of update actions (based on I)

2 Compute I ◦ U
3 Check if all AICs in η hold

Each step can be done in polynomial time on I and η.

Finding weak repairs is NP-complete.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Finding repairs

Algorithm

1 Choose a set U of update actions (based on I)

2 Compute I ◦ U
3 Check if all AICs in η hold

Each step can be done in polynomial time on I and η.

Finding weak repairs is NP-complete.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Declarative semantics

The notion of repair ignores the head of the AIC.

Caroprese et al., 2006/2011

founded repairs take into account the actions in the head

justified repairs avoid justification circles

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Declarative semantics

The notion of repair ignores the head of the AIC.

Caroprese et al., 2006/2011

founded repairs take into account the actions in the head

justified repairs avoid justification circles

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Declarative semantics

The notion of repair ignores the head of the AIC.

Caroprese et al., 2006/2011

founded repairs take into account the actions in the head

justified repairs avoid justification circles

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Founded repairs (I)

Intuitively: if U is founded, then removing an action from U causes
some AIC with that action in the head to be violated.

Definition

A set of update actions U is founded w.r.t. I and η if, for every
α ∈ U , there is a rule r ∈ η such that α ∈ head(r) and

I ◦ (U \ {α}) 6|= r .

(Equivalent to the original definition.)

Definition

A (weak) repair that is founded is called a founded (weak) repair.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Founded repairs (I)

Intuitively: if U is founded, then removing an action from U causes
some AIC with that action in the head to be violated.

Definition

A set of update actions U is founded w.r.t. I and η if, for every
α ∈ U , there is a rule r ∈ η such that α ∈ head(r) and

I ◦ (U \ {α}) 6|= r .

(Equivalent to the original definition.)

Definition

A (weak) repair that is founded is called a founded (weak) repair.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Founded repairs (I)

Intuitively: if U is founded, then removing an action from U causes
some AIC with that action in the head to be violated.

Definition

A set of update actions U is founded w.r.t. I and η if, for every
α ∈ U , there is a rule r ∈ η such that α ∈ head(r) and

I ◦ (U \ {α}) 6|= r .

(Equivalent to the original definition.)

Definition

A (weak) repair that is founded is called a founded (weak) repair.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Founded repairs (I)

Intuitively: if U is founded, then removing an action from U causes
some AIC with that action in the head to be violated.

Definition

A set of update actions U is founded w.r.t. I and η if, for every
α ∈ U , there is a rule r ∈ η such that α ∈ head(r) and

I ◦ (U \ {α}) 6|= r .

(Equivalent to the original definition.)

Definition

A (weak) repair that is founded is called a founded (weak) repair.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Founded repairs (II)

Example

Take I = {a, b} and

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

Then {+c} is a founded repair, but so is {−a,−b}.

In {−a,−b} we have a circularity of support.

It is a founded repair that is not justified.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Founded repairs (II)

Example

Take I = {a, b} and

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

Then {+c} is a founded repair,

but so is {−a,−b}.

In {−a,−b} we have a circularity of support.

It is a founded repair that is not justified.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Founded repairs (II)

Example

Take I = {a, b} and

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

Then {+c} is a founded repair, but so is {−a,−b}.

In {−a,−b} we have a circularity of support.

It is a founded repair that is not justified.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Founded repairs (II)

Example

Take I = {a, b} and

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

Then {+c} is a founded repair, but so is {−a,−b}.

In {−a,−b} we have a circularity of support.

It is a founded repair that is not justified.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Founded repairs (II)

Example

Take I = {a, b} and

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

Then {+c} is a founded repair, but so is {−a,−b}.

In {−a,−b} we have a circularity of support.

It is a founded repair that is not justified.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Justified repairs

The definition is meant to avoid circularity of support.

It is not intuitive and there is no motivation in the references.

Too restrictive?

Take I = {a, b} and

r1 : a, b ⊃ −a r2 : a, not b ⊃ −a r3 : not a, b ⊃ −b

Again {−a,−b} is a founded repair that is not justified.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Justified repairs

The definition is meant to avoid circularity of support.

It is not intuitive and there is no motivation in the references.

Too restrictive?

Take I = {a, b} and

r1 : a, b ⊃ −a r2 : a, not b ⊃ −a r3 : not a, b ⊃ −b

Again {−a,−b} is a founded repair that is not justified.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Justified repairs

The definition is meant to avoid circularity of support.

It is not intuitive and there is no motivation in the references.

Too restrictive?

Take I = {a, b} and

r1 : a, b ⊃ −a r2 : a, not b ⊃ −a r3 : not a, b ⊃ −b

Again {−a,−b} is a founded repair that is not justified.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Justified repairs

The definition is meant to avoid circularity of support.

It is not intuitive and there is no motivation in the references.

Too restrictive?

Take I = {a, b} and

r1 : a, b ⊃ −a r2 : a, not b ⊃ −a r3 : not a, b ⊃ −b

Again {−a,−b} is a founded repair that is not justified.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Complexity

Deciding whether there is a founded weak repair for I and η is
NP-complete.

Deciding whether there is a founded repair for I and η is
Σ2
P -complete.

Deciding whether there is a justified (weak) repair for I and η is
Σ2
P -complete.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Complexity

Deciding whether there is a founded weak repair for I and η is
NP-complete.

Deciding whether there is a founded repair for I and η is
Σ2
P -complete.

Deciding whether there is a justified (weak) repair for I and η is
Σ2
P -complete.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Complexity

Deciding whether there is a founded weak repair for I and η is
NP-complete.

Deciding whether there is a founded repair for I and η is
Σ2
P -complete.

Deciding whether there is a justified (weak) repair for I and η is
Σ2
P -complete.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Parallellization and stratification

4 Conclusions

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Motivation

Reduce the size of the problem by splitting the set of AICs into
smaller sets.

Goals:

do not lose repairs;

efficient combination of results.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Motivation

Reduce the size of the problem by splitting the set of AICs into
smaller sets.

Goals:

do not lose repairs;

efficient combination of results.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Motivation

Reduce the size of the problem by splitting the set of AICs into
smaller sets.

Goals:

do not lose repairs;

efficient combination of results.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Motivation

Reduce the size of the problem by splitting the set of AICs into
smaller sets.

Goals:

do not lose repairs;

efficient combination of results.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence

Definition

Two AICs r1 and r2 are independent, r1 |= r2, if the literals in their
bodies do not share atoms.

Two sets of AICs η1 and η2 are independent, η1 |= η2, if r1 |= r2
for every r1 ∈ η1 and r2 ∈ η2.

No attention to the heads of the rules.

Not affected by the database.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence

Definition

Two AICs r1 and r2 are independent, r1 |= r2, if the literals in their
bodies do not share atoms.
Two sets of AICs η1 and η2 are independent, η1 |= η2, if r1 |= r2
for every r1 ∈ η1 and r2 ∈ η2.

No attention to the heads of the rules.

Not affected by the database.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence

Definition

Two AICs r1 and r2 are independent, r1 |= r2, if the literals in their
bodies do not share atoms.
Two sets of AICs η1 and η2 are independent, η1 |= η2, if r1 |= r2
for every r1 ∈ η1 and r2 ∈ η2.

No attention to the heads of the rules.

Not affected by the database.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence

Definition

Two AICs r1 and r2 are independent, r1 |= r2, if the literals in their
bodies do not share atoms.
Two sets of AICs η1 and η2 are independent, η1 |= η2, if r1 |= r2
for every r1 ∈ η1 and r2 ∈ η2.

No attention to the heads of the rules.

Not affected by the database.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (I)

Theorem

Let η = η1 ∪ η2 with η1 |= η2; I be a database; and U be a weak
repair for I and η.

Define Ui as the set of actions in U affecting literals in the bodies
of rules in ηi , for i = 1, 2.
Then:

each Ui is a weak repair for I and ηi ;

if U is a repair, then so is each Ui ;
if U is founded, then so is each Ui ;
if U is justified, then so is each Ui .

Furthermore, if every action in U affects a literal in the body of a
rule in η, then U = U1 ∪ U2. This hypothesis is (very) reasonable
in practice.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (I)

Theorem

Let η = η1 ∪ η2 with η1 |= η2; I be a database; and U be a weak
repair for I and η.
Define Ui as the set of actions in U affecting literals in the bodies
of rules in ηi , for i = 1, 2.

Then:

each Ui is a weak repair for I and ηi ;

if U is a repair, then so is each Ui ;
if U is founded, then so is each Ui ;
if U is justified, then so is each Ui .

Furthermore, if every action in U affects a literal in the body of a
rule in η, then U = U1 ∪ U2. This hypothesis is (very) reasonable
in practice.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (I)

Theorem

Let η = η1 ∪ η2 with η1 |= η2; I be a database; and U be a weak
repair for I and η.
Define Ui as the set of actions in U affecting literals in the bodies
of rules in ηi , for i = 1, 2.
Then:

each Ui is a weak repair for I and ηi ;

if U is a repair, then so is each Ui ;
if U is founded, then so is each Ui ;
if U is justified, then so is each Ui .

Furthermore, if every action in U affects a literal in the body of a
rule in η, then U = U1 ∪ U2. This hypothesis is (very) reasonable
in practice.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (I)

Theorem

Let η = η1 ∪ η2 with η1 |= η2; I be a database; and U be a weak
repair for I and η.
Define Ui as the set of actions in U affecting literals in the bodies
of rules in ηi , for i = 1, 2.
Then:

each Ui is a weak repair for I and ηi ;

if U is a repair, then so is each Ui ;
if U is founded, then so is each Ui ;
if U is justified, then so is each Ui .

Furthermore, if every action in U affects a literal in the body of a
rule in η, then U = U1 ∪ U2. This hypothesis is (very) reasonable
in practice.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (I)

Theorem

Let η = η1 ∪ η2 with η1 |= η2; I be a database; and U be a weak
repair for I and η.
Define Ui as the set of actions in U affecting literals in the bodies
of rules in ηi , for i = 1, 2.
Then:

each Ui is a weak repair for I and ηi ;

if U is a repair, then so is each Ui ;

if U is founded, then so is each Ui ;
if U is justified, then so is each Ui .

Furthermore, if every action in U affects a literal in the body of a
rule in η, then U = U1 ∪ U2. This hypothesis is (very) reasonable
in practice.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (I)

Theorem

Let η = η1 ∪ η2 with η1 |= η2; I be a database; and U be a weak
repair for I and η.
Define Ui as the set of actions in U affecting literals in the bodies
of rules in ηi , for i = 1, 2.
Then:

each Ui is a weak repair for I and ηi ;

if U is a repair, then so is each Ui ;
if U is founded, then so is each Ui ;

if U is justified, then so is each Ui .
Furthermore, if every action in U affects a literal in the body of a
rule in η, then U = U1 ∪ U2. This hypothesis is (very) reasonable
in practice.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (I)

Theorem

Let η = η1 ∪ η2 with η1 |= η2; I be a database; and U be a weak
repair for I and η.
Define Ui as the set of actions in U affecting literals in the bodies
of rules in ηi , for i = 1, 2.
Then:

each Ui is a weak repair for I and ηi ;

if U is a repair, then so is each Ui ;
if U is founded, then so is each Ui ;
if U is justified, then so is each Ui .

Furthermore, if every action in U affects a literal in the body of a
rule in η, then U = U1 ∪ U2. This hypothesis is (very) reasonable
in practice.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (I)

Theorem

Let η = η1 ∪ η2 with η1 |= η2; I be a database; and U be a weak
repair for I and η.
Define Ui as the set of actions in U affecting literals in the bodies
of rules in ηi , for i = 1, 2.
Then:

each Ui is a weak repair for I and ηi ;

if U is a repair, then so is each Ui ;
if U is founded, then so is each Ui ;
if U is justified, then so is each Ui .

Furthermore, if every action in U affects a literal in the body of a
rule in η, then U = U1 ∪ U2.

This hypothesis is (very) reasonable
in practice.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (I)

Theorem

Let η = η1 ∪ η2 with η1 |= η2; I be a database; and U be a weak
repair for I and η.
Define Ui as the set of actions in U affecting literals in the bodies
of rules in ηi , for i = 1, 2.
Then:

each Ui is a weak repair for I and ηi ;

if U is a repair, then so is each Ui ;
if U is founded, then so is each Ui ;
if U is justified, then so is each Ui .

Furthermore, if every action in U affects a literal in the body of a
rule in η, then U = U1 ∪ U2. This hypothesis is (very) reasonable
in practice.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (II)

Proof (sketch).

Given r1 ∈ η1 and r2 ∈ η2, changing the logical values of literals in
the body of r1 cannot affect the semantics of r2 and vice-versa.

This implies that Ui is a weak repair for I and ηi .

This also implies that, if U is minimal, then so must U1 and U2 be.

For foundedness, take α ∈ U1. Since U is founded, there is a rule
r ∈ η such that I ◦ (U \ {α}) 6|= r . Necessarily r ∈ η1 and
I ◦ (U1 \ {α}) 6|= r . Therefore U1 is founded.

This means that we can parallellize the search for repairs without
losing solutions.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (II)

Proof (sketch).

Given r1 ∈ η1 and r2 ∈ η2, changing the logical values of literals in
the body of r1 cannot affect the semantics of r2 and vice-versa.
This implies that Ui is a weak repair for I and ηi .

This also implies that, if U is minimal, then so must U1 and U2 be.

For foundedness, take α ∈ U1. Since U is founded, there is a rule
r ∈ η such that I ◦ (U \ {α}) 6|= r . Necessarily r ∈ η1 and
I ◦ (U1 \ {α}) 6|= r . Therefore U1 is founded.

This means that we can parallellize the search for repairs without
losing solutions.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (II)

Proof (sketch).

Given r1 ∈ η1 and r2 ∈ η2, changing the logical values of literals in
the body of r1 cannot affect the semantics of r2 and vice-versa.
This implies that Ui is a weak repair for I and ηi .

This also implies that, if U is minimal, then so must U1 and U2 be.

For foundedness, take α ∈ U1. Since U is founded, there is a rule
r ∈ η such that I ◦ (U \ {α}) 6|= r . Necessarily r ∈ η1 and
I ◦ (U1 \ {α}) 6|= r . Therefore U1 is founded.

This means that we can parallellize the search for repairs without
losing solutions.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (II)

Proof (sketch).

Given r1 ∈ η1 and r2 ∈ η2, changing the logical values of literals in
the body of r1 cannot affect the semantics of r2 and vice-versa.
This implies that Ui is a weak repair for I and ηi .

This also implies that, if U is minimal, then so must U1 and U2 be.

For foundedness, take α ∈ U1.

Since U is founded, there is a rule
r ∈ η such that I ◦ (U \ {α}) 6|= r . Necessarily r ∈ η1 and
I ◦ (U1 \ {α}) 6|= r . Therefore U1 is founded.

This means that we can parallellize the search for repairs without
losing solutions.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (II)

Proof (sketch).

Given r1 ∈ η1 and r2 ∈ η2, changing the logical values of literals in
the body of r1 cannot affect the semantics of r2 and vice-versa.
This implies that Ui is a weak repair for I and ηi .

This also implies that, if U is minimal, then so must U1 and U2 be.

For foundedness, take α ∈ U1. Since U is founded, there is a rule
r ∈ η such that I ◦ (U \ {α}) 6|= r .

Necessarily r ∈ η1 and
I ◦ (U1 \ {α}) 6|= r . Therefore U1 is founded.

This means that we can parallellize the search for repairs without
losing solutions.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (II)

Proof (sketch).

Given r1 ∈ η1 and r2 ∈ η2, changing the logical values of literals in
the body of r1 cannot affect the semantics of r2 and vice-versa.
This implies that Ui is a weak repair for I and ηi .

This also implies that, if U is minimal, then so must U1 and U2 be.

For foundedness, take α ∈ U1. Since U is founded, there is a rule
r ∈ η such that I ◦ (U \ {α}) 6|= r . Necessarily r ∈ η1

and
I ◦ (U1 \ {α}) 6|= r . Therefore U1 is founded.

This means that we can parallellize the search for repairs without
losing solutions.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (II)

Proof (sketch).

Given r1 ∈ η1 and r2 ∈ η2, changing the logical values of literals in
the body of r1 cannot affect the semantics of r2 and vice-versa.
This implies that Ui is a weak repair for I and ηi .

This also implies that, if U is minimal, then so must U1 and U2 be.

For foundedness, take α ∈ U1. Since U is founded, there is a rule
r ∈ η such that I ◦ (U \ {α}) 6|= r . Necessarily r ∈ η1 and
I ◦ (U1 \ {α}) 6|= r .

Therefore U1 is founded.

This means that we can parallellize the search for repairs without
losing solutions.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (II)

Proof (sketch).

Given r1 ∈ η1 and r2 ∈ η2, changing the logical values of literals in
the body of r1 cannot affect the semantics of r2 and vice-versa.
This implies that Ui is a weak repair for I and ηi .

This also implies that, if U is minimal, then so must U1 and U2 be.

For foundedness, take α ∈ U1. Since U is founded, there is a rule
r ∈ η such that I ◦ (U \ {α}) 6|= r . Necessarily r ∈ η1 and
I ◦ (U1 \ {α}) 6|= r . Therefore U1 is founded.

This means that we can parallellize the search for repairs without
losing solutions.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (II)

Proof (sketch).

Given r1 ∈ η1 and r2 ∈ η2, changing the logical values of literals in
the body of r1 cannot affect the semantics of r2 and vice-versa.
This implies that Ui is a weak repair for I and ηi .

This also implies that, if U is minimal, then so must U1 and U2 be.

For foundedness, take α ∈ U1. Since U is founded, there is a rule
r ∈ η such that I ◦ (U \ {α}) 6|= r . Necessarily r ∈ η1 and
I ◦ (U1 \ {α}) 6|= r . Therefore U1 is founded.

This means that we can parallellize the search for repairs without
losing solutions.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (III)

Theorem

Let η = η1 ∪ η2 with η1 |= η2; I be a database; and Ui be weak
repairs for I and ηi , for i = 1, 2, such that all actions in Ui affect a
literal in the body of a rule in ηi .

Define U = U1 ∪ U2.
Then:

U is a weak repair for I and η;

if each Ui is a repair, then so is U ;

if each Ui is founded, then so is U ;

if each Ui is justified, then so is U .

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (III)

Theorem

Let η = η1 ∪ η2 with η1 |= η2; I be a database; and Ui be weak
repairs for I and ηi , for i = 1, 2, such that all actions in Ui affect a
literal in the body of a rule in ηi .
Define U = U1 ∪ U2.

Then:

U is a weak repair for I and η;

if each Ui is a repair, then so is U ;

if each Ui is founded, then so is U ;

if each Ui is justified, then so is U .

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (III)

Theorem

Let η = η1 ∪ η2 with η1 |= η2; I be a database; and Ui be weak
repairs for I and ηi , for i = 1, 2, such that all actions in Ui affect a
literal in the body of a rule in ηi .
Define U = U1 ∪ U2.
Then:

U is a weak repair for I and η;

if each Ui is a repair, then so is U ;

if each Ui is founded, then so is U ;

if each Ui is justified, then so is U .

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (IV)

The proof is similar.

This means that parallellization of the search does not add “new”
(false) solutions.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Independence vs. parallellization (IV)

The proof is similar.

This means that parallellization of the search does not add “new”
(false) solutions.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Computing independent sets of AICs

The previous results generalize to several independent sets of AICs.

In order to split a set η into independent sets, consider the relation
6 |= +. This is an equivalence relation. The quotient set η/6 |= + is the

finest partition of η in independent sets, and can be computed
efficiently.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Computing independent sets of AICs

The previous results generalize to several independent sets of AICs.

In order to split a set η into independent sets, consider the relation
6 |= +.

This is an equivalence relation. The quotient set η/6 |= + is the

finest partition of η in independent sets, and can be computed
efficiently.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Computing independent sets of AICs

The previous results generalize to several independent sets of AICs.

In order to split a set η into independent sets, consider the relation
6 |= +. This is an equivalence relation.

The quotient set η/6 |= + is the

finest partition of η in independent sets, and can be computed
efficiently.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Computing independent sets of AICs

The previous results generalize to several independent sets of AICs.

In order to split a set η into independent sets, consider the relation
6 |= +. This is an equivalence relation. The quotient set η/6 |= + is the

finest partition of η in independent sets, and can be computed
efficiently.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Precedence

Definition

AIC r1 precedes AIC r2, r1 ≺ r2, if some action in the head of r1
affects a literal in the body of r2.

Reflexive relation.

〈η/≈,�〉 is a partial order, where � is the transitive closure of
≺ and ≈ is the induced equivalence relation.

(Similar to stratified negation in logic programming. . .)

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Precedence

Definition

AIC r1 precedes AIC r2, r1 ≺ r2, if some action in the head of r1
affects a literal in the body of r2.

Reflexive relation.

〈η/≈,�〉 is a partial order, where � is the transitive closure of
≺ and ≈ is the induced equivalence relation.

(Similar to stratified negation in logic programming. . .)

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Precedence

Definition

AIC r1 precedes AIC r2, r1 ≺ r2, if some action in the head of r1
affects a literal in the body of r2.

Reflexive relation.

〈η/≈,�〉 is a partial order, where � is the transitive closure of
≺ and ≈ is the induced equivalence relation.

(Similar to stratified negation in logic programming. . .)

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Precedence

Definition

AIC r1 precedes AIC r2, r1 ≺ r2, if some action in the head of r1
affects a literal in the body of r2.

Reflexive relation.

〈η/≈,�〉 is a partial order, where � is the transitive closure of
≺ and ≈ is the induced equivalence relation.

(Similar to stratified negation in logic programming. . .)

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Precedence vs. stratification (I)

Theorem

Let η1, η2 ∈ η/≈ with η1 ≺ η2; I be a database; and U be a weak
repair for I and η1 ∪ η2.

Assume that every action in U occurs in the head of a rule in
η1 ∪ η2.
Define Ui as the set of actions in U in the head of a rule in ηi , for
i = 1, 2.
Then:

U1 is a weak repair for I and η1 and U2 is a weak repair for
I ◦ U1 and η2;

if U is founded/justified, then so is each Ui .

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Precedence vs. stratification (I)

Theorem

Let η1, η2 ∈ η/≈ with η1 ≺ η2; I be a database; and U be a weak
repair for I and η1 ∪ η2.
Assume that every action in U occurs in the head of a rule in
η1 ∪ η2.

Define Ui as the set of actions in U in the head of a rule in ηi , for
i = 1, 2.
Then:

U1 is a weak repair for I and η1 and U2 is a weak repair for
I ◦ U1 and η2;

if U is founded/justified, then so is each Ui .

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Precedence vs. stratification (I)

Theorem

Let η1, η2 ∈ η/≈ with η1 ≺ η2; I be a database; and U be a weak
repair for I and η1 ∪ η2.
Assume that every action in U occurs in the head of a rule in
η1 ∪ η2.
Define Ui as the set of actions in U in the head of a rule in ηi , for
i = 1, 2.

Then:

U1 is a weak repair for I and η1 and U2 is a weak repair for
I ◦ U1 and η2;

if U is founded/justified, then so is each Ui .

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Precedence vs. stratification (I)

Theorem

Let η1, η2 ∈ η/≈ with η1 ≺ η2; I be a database; and U be a weak
repair for I and η1 ∪ η2.
Assume that every action in U occurs in the head of a rule in
η1 ∪ η2.
Define Ui as the set of actions in U in the head of a rule in ηi , for
i = 1, 2.
Then:

U1 is a weak repair for I and η1 and U2 is a weak repair for
I ◦ U1 and η2;

if U is founded/justified, then so is each Ui .

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Precedence vs. stratification (I)

Theorem

Let η1, η2 ∈ η/≈ with η1 ≺ η2; I be a database; and U be a weak
repair for I and η1 ∪ η2.
Assume that every action in U occurs in the head of a rule in
η1 ∪ η2.
Define Ui as the set of actions in U in the head of a rule in ηi , for
i = 1, 2.
Then:

U1 is a weak repair for I and η1 and U2 is a weak repair for
I ◦ U1 and η2;

if U is founded/justified, then so is each Ui .

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Precedence vs. stratification (I)

Theorem

Let η1, η2 ∈ η/≈ with η1 ≺ η2; I be a database; and U be a weak
repair for I and η1 ∪ η2.
Assume that every action in U occurs in the head of a rule in
η1 ∪ η2.
Define Ui as the set of actions in U in the head of a rule in ηi , for
i = 1, 2.
Then:

U1 is a weak repair for I and η1 and U2 is a weak repair for
I ◦ U1 and η2;

if U is founded/justified, then so is each Ui .

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Precedence vs. stratification (II)

The proof is similar to the above.

This allows us to sequentialize the search for repairs.

However, some results do not hold:

it may happen that U is a repair, but U1 and/or U2 are not;

there may be a weak (founded, justified) repair U1 for I and
η1 that is not a subset of any weak repair for I and η1 ∪ η2.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Precedence vs. stratification (II)

The proof is similar to the above.

This allows us to sequentialize the search for repairs.

However, some results do not hold:

it may happen that U is a repair, but U1 and/or U2 are not;

there may be a weak (founded, justified) repair U1 for I and
η1 that is not a subset of any weak repair for I and η1 ∪ η2.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Precedence vs. stratification (II)

The proof is similar to the above.

This allows us to sequentialize the search for repairs.

However, some results do not hold:

it may happen that U is a repair, but U1 and/or U2 are not;

there may be a weak (founded, justified) repair U1 for I and
η1 that is not a subset of any weak repair for I and η1 ∪ η2.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Precedence vs. stratification (II)

The proof is similar to the above.

This allows us to sequentialize the search for repairs.

However, some results do not hold:

it may happen that U is a repair, but U1 and/or U2 are not;

there may be a weak (founded, justified) repair U1 for I and
η1 that is not a subset of any weak repair for I and η1 ∪ η2.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Precedence vs. stratification (II)

The proof is similar to the above.

This allows us to sequentialize the search for repairs.

However, some results do not hold:

it may happen that U is a repair, but U1 and/or U2 are not;

there may be a weak (founded, justified) repair U1 for I and
η1 that is not a subset of any weak repair for I and η1 ∪ η2.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Precedence vs. stratification (III)

Theorem

Let η1, η2 and I be as before; U1 be a weak repair for I and η1;
U2 be a weak repair for I ◦ U1 and η2; such that every action in Ui
occurs in the head of a rule in ηi .

Define U = U1 ∪ U2.
Then:

U is a weak repair for I and η;

if each Ui is a repair, then so is U ;

if each Ui is founded/justified, then so is U .

The proof is similar.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Precedence vs. stratification (III)

Theorem

Let η1, η2 and I be as before; U1 be a weak repair for I and η1;
U2 be a weak repair for I ◦ U1 and η2; such that every action in Ui
occurs in the head of a rule in ηi .
Define U = U1 ∪ U2.

Then:

U is a weak repair for I and η;

if each Ui is a repair, then so is U ;

if each Ui is founded/justified, then so is U .

The proof is similar.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Precedence vs. stratification (III)

Theorem

Let η1, η2 and I be as before; U1 be a weak repair for I and η1;
U2 be a weak repair for I ◦ U1 and η2; such that every action in Ui
occurs in the head of a rule in ηi .
Define U = U1 ∪ U2.
Then:

U is a weak repair for I and η;

if each Ui is a repair, then so is U ;

if each Ui is founded/justified, then so is U .

The proof is similar.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Precedence vs. stratification (III)

Theorem

Let η1, η2 and I be as before; U1 be a weak repair for I and η1;
U2 be a weak repair for I ◦ U1 and η2; such that every action in Ui
occurs in the head of a rule in ηi .
Define U = U1 ∪ U2.
Then:

U is a weak repair for I and η;

if each Ui is a repair, then so is U ;

if each Ui is founded/justified, then so is U .

The proof is similar.

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Parallellization and stratification

4 Conclusions

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

What we achieved. . .

Split a large problem in several smaller ones

Possibility of parallellization

Stratification relation

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

What we achieved. . .

Split a large problem in several smaller ones

Possibility of parallellization

Stratification relation

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

What we achieved. . .

Split a large problem in several smaller ones

Possibility of parallellization

Stratification relation

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

What we achieved. . .

Split a large problem in several smaller ones

Possibility of parallellization

Stratification relation

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

. . . and what we still hope to do

(More) practical evaluation

Prototype implementation

Generalizations of AICs outside the database world

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

. . . and what we still hope to do

(More) practical evaluation

Prototype implementation

Generalizations of AICs outside the database world

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

. . . and what we still hope to do

(More) practical evaluation

Prototype implementation

Generalizations of AICs outside the database world

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

. . . and what we still hope to do

(More) practical evaluation

Prototype implementation

Generalizations of AICs outside the database world

Integrity constraints Active integrity constraints Parallellization and stratification Conclusions

Thank you.

	Integrity constraints
	Active integrity constraints
	Parallellization and stratification
	Conclusions

