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What are sorting networks?

Oblivious algorithms to sort a given number of inputs
Easy to implement at the hardware level

Intrinsically parallel

Two interesting optimization problems:

e size (production cost)
o depth (execution time)
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What are sorting networks?

@ Oblivious algorithms to sort a given number of inputs
@ Easy to implement at the hardware level
@ Intrinsically parallel
@ Two interesting optimization problems:
e size (production cost)
o depth (execution time)
@ See Donald E. Knuth, The Art of Computer Programming,

vol. 3 for more details
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A sorting network




Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

A sorting network

o, ]




Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

A sorting network




Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

A sorting network




Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

A sorting network




Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

A sorting network

This net has 5 channels and 9 comparators.
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A sorting network

Some of the comparisons may be performed in parallel:
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A sorting network

Some of the comparisons may be performed in parallel:

This net has 5 /ayers.
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The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (S,)?

The depth problem

| A\

What is the minimal number of /ayers on a sorting network on
n channels (T,)?
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The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (S,)?

The depth problem

| A\

What is the minimal number of /ayers on a sorting network on
n channels (T,)?

Knuth 1973

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Sh< |3 5 9 12 16 19 |25 29 35 39 45 51 56 60
S>3 5 9 12 16 19 |23 27 31 35 39 47 51 55
T, <|3 3 5 5 6 6 7 7 8 8 9 9 9 9
T,> |3 3 5 5 6 6 6 6 6 6 6 6 6 6

\
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The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (S,)?

The depth problem

| A\

What is the minimal number of /ayers on a sorting network on
n channels (T,)?

Parberry 1991

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5|13 5 9 12 16 19 |25 29 35 39 45 51 56 60
Sv> |3 5 9 12 16 19 |23 27 31 35 39 47 51 55
T, < |3 3 5 5 6 6 7 7 8 8 9 9 9 9
T.> |3 3 5 5 6 6 7 7 ‘ 7 7 7 7 7 7

A\
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The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (S,)?

The depth problem

| A\

What is the minimal number of /ayers on a sorting network on
n channels (T,)?

4

Bundala & Zavodny 2013

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
S,< |3 5 O 12 16 19|25 20 35 39 45 51 56 60
S»> |3 5 9 12 16 19|23 27 31 35 39 47 51 55
.<|3 3 5 5 6 6 7 7 8 8 9 9 9 9
,>|3 3 5 5 6 6 7 7 8 8 9 9 9 9 ‘

4
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The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (S,)?

| A\

The depth problem

What is the minimal number of /ayers on a sorting network on
n channels (T,)?

A\

Codish, Cruz-Filipe, Frank & Schneider-Kamp (CCFS) 2014

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
S5< (13 5 9 12 16 19 25 29 | 35 39 45 51 56 60
S»> |3 5 9 12 16 19 25 29 |33 37 41 45 49 53
T, < |3 3 5 5 6 6 7 7 8 8 9 9 9 9
T.> |3 3 5 5 6 6 7 7 8 8 9 9 9 9
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An exponential explosion

e Upper bounds obtained by concrete examples (1960s)
@ Lower bounds obtained by mathematical arguments
@ HUGE number of nets
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An exponential explosion

Upper bounds obtained by concrete examples (1960s)
Lower bounds obtained by mathematical arguments
HUGE number of nets

Parberry (1991)

e exploration of symmetries
o fixed first layer
e 200 hours of computation
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An exponential explosion

e Upper bounds obtained by concrete examples (1960s)
Lower bounds obtained by mathematical arguments
HUGE number of nets

Parberry (1991)

Bundala & Zavodny (2013)

e exploration of symmetries
e reduced set of two-layer prefixes
e intensive SAT-solving
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An exponential explosion

Upper bounds obtained by concrete examples (1960s)
Lower bounds obtained by mathematical arguments
HUGE number of nets

Parberry (1991)

Bundala & Zgvodny (2013)

These techniques are not directly applicable to the size
problem

36 possibilities for each layer when n =9, so

36%* ~ 2.2 x 1037 24-comparator nets
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An exponential explosion

Upper bounds obtained by concrete examples (1960s)
Lower bounds obtained by mathematical arguments
HUGE number of nets

Parberry (1991)

Bundala & Zgvodny (2013)

These techniques are not directly applicable to the size
problem
e CCFS (2014)

e generate-and-prune
e combine brute-force generation with optimal (?) reduction
e compromise between time and space
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Comparator networks

A (generalized) comparator network C on n channels is a
sequence of pairs (7, /) (the comparators) such that
1<i#j<n.

@ A standard comparator network C is a generalized comparator
network such that i < j for every comparator (i,j) € C.

@ The output of comparator (i,j) on X = x1...x, is X', where
x; = min(x;, x;), x; = max(x;, x;), and x; = x for k # i, j.
@ The output of C on a sequence xj ... Xy, is defined

inductively:
o if Cis empty, then C(x1...xp) = X1 ... Xp;
o if Cis (i,j); C' then C(xy...x,) = C'((7,/)(x1...%n))
@ A comparator network C is a sorting network if C(X) is sorted
for every input X.
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Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in

(0,1},
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Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in

(0,1},

“C is a sorting network on n channels” is co-NP (complete).
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Well-known results

0-1 lemma (Knuth 1973)
C is a sorting network on n channels iff C sorts all inputs in
{0,1}".

Standardization theorem (Knuth 1973)

If C is a generalized sorting network, then there is a standard
sorting network C’ with the same size and depth as C.
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Well-known results

0-1 lemma (Knuth 1973)
C is a sorting network on n channels iff C sorts all inputs in

{0,1}". J

Standardization theorem (Knuth 1973)

If C is a generalized sorting network, then there is a standard
sorting network C’ with the same size and depth as C.

<

We will only consider binary inputs and use generalized comparator
networks whenever needed.
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Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in

(0,1},

Standardization theorem (Knuth 1973)

If C is a generalized sorting network, then there is a standard
sorting network C’ with the same size and depth as C.

Output lemma (Parberry 1991)

Let C and C’ be comparator networks such that
outputs(C) C outputs(C’). If C’'; N is a sorting network, then so is
C:N.
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Permutations (Bundala & Zavodny 2013)

Permuted output lemma (1)

If:

@ C and C’ are standard comparator networks of depth 2;
@ 7 is a permutation of 1..n mapping outputs(C) into
outputs(C’);
@ C’ can be extended to a sorting network;
then C can also be extended to a standard sorting network of the

same depth.
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Permutations (Bundala & Zavodny 2013)

Permuted output lemma (1)

If:

@ C and (' are standard comparator networks of depth 2;
@ 7 is a permutation of 1..n mapping outputs(C) into
outputs(C’);
@ C’ can be extended to a sorting network;
then C can also be extended to a standard sorting network of the

same depth.
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Permutations revisited (CCFS 2014)

Permuted output lemma (I1)

If:

@ C and C’ are standard comparator networks of equal size;
@ 7 is a permutation of 1..n mapping outputs(C) into
outputs(C’);
@ C’ can be extended to a sorting network;
then C can also be extended to a standard sorting network of the

same size.
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Permutations revisited (CCFS 2014)

Permuted output lemma (I1)

If:

@ C and C’ are standard comparator networks of equal size;
@ 7 is a permutation of 1..n mapping outputs(C) into
outputs(C’);
@ C’ can be extended to a sorting network;
then C can also be extended to a standard sorting network of the
same size. )

We say that C < C’ when m(outputs(C)) C outputs(C’) for some
permutation .
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Permutations revisited (CCFS 2014)

Permuted output lemma (I1)
If:

@ C and C’ are standard comparator networks of equal size;

@ 7 is a permutation of 1..n mapping outputs(C) into
outputs(C’);
@ C’ can be extended to a sorting network;

then C can also be extended to a standard sorting network of the
same size.

We say that C < C’ when m(outputs(C)) C outputs(C’) for some
permutation 7. Note that < is reflexive and transitive. Also, if C

is a sorting network, then C < C’ for every other standard network
C’ on the same number of channels.
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The algorithms (1)

Generate-and-prune
@ (Init) Set R§ = {0} and k = 0.
© Repeat:

o (Generate) Extend every net in R} with one comparator in
every possible way. Let N/ ; be the set of all results.

o (Prune) Keep only one element of each minimal equivalence
class w.r.t. the transitive closure of <. Let R,f+1 be the
resulting set.

o Increase k.

until k > 1 and |R]| = 1.
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The algorithms (1)

Generate-and-prune
@ (Init) Set R§ = {0} and k = 0.
© Repeat:

o (Generate) Extend every net in R} with one comparator in
every possible way. Let N/ ; be the set of all results.

o (Prune) Keep only one element of each minimal equivalence
class w.r.t. the transitive closure of <. Let R,f+1 be the
resulting set.

o Increase k.

until k > 1 and |R]| = 1.

If |[R7| > 1, then there can be no sorting network of size k on n
channels. If the algorithm finishes with |R]| = {C} and C is a
sorting network, then S, = k.
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The algorithms (11)

Generate (Input R; output N )

o (Init) N7, =0, G ={(i,j)[1<i<j<n}
o for C € Rl and c € C,: NP, = NP, U{C;c}




Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

The algorithms (11)

Generate (Input R; output N )

o (Init) N2,y =0, Co = {(ir)) | 1< i <j<n}
o for C€ Ry and c € Cy: N, = N7, U{C;c}

4

Prune (Input NJ; output R})
o (Init) R} =10
e for C € N do
o for C' € R}: if (C’ < C) then mark C
o if (not_marked(C)) then
o for C' € R}: if (C X C') then R = R} \ {C'}
o R =RIU{C}

\
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Some numerology

The Generate-and-Prune approach

RI|3|4] 5] 6] 7 8
T[1]1| 1] 1| 1 1
2(213] 3| 3| 3 3
3|1)a] 6| 7] 7 7
4 2|11 |17 | 19 20
5 1]10|36]| 51 57
6 753|141 189
7 6 | 53 | 325 648
8 4| 44 | 564 | 2,088
9 1|23 |678]| 5,703

10 8 | 510 | 11,669

11 4 | 280 | 16,095

12 1| 106 | 13,305

13 33| 6,675

14 11| 2,216

15 6 503

16 1 77

17 18

18 9

19 1

Conclusions & Future Work
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Optimizing Generate

Redundant comparators

A comparator (i, ) is redundant w.r.t. C if x; < x; for every
X € outputs(C).
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Optimizing Generate

Redundant comparators
A comparator (i, ) is redundant w.r.t. C if x; < x; for every
X € outputs(C).

Redundant comparators:
@ do nothing;
@ may not occur in minimal-size sorting networks;
@ are easy to detect;
@ can be avoided at generation time.
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Optimizing Generate

Redundant comparators

A comparator (i, ) is redundant w.r.t. C if x; < x; for every
X € outputs(C).

Redundant comparators:
@ do nothing;
@ may not occur in minimal-size sorting networks;
@ are easy to detect;
@ can be avoided at generation time.

Generate is much faster than Prune, so it pays off to do this test
at generation time.
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Optimizing Prune (I)

The big cost in Prune is searching for a candidate permutation in
the subsumption test.
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Optimizing Prune (1)

The big cost in Prune is searching for a candidate permutation in
the subsumption test.

If the number of sequences with k 1s in outputs(C,) is greater
than that in outputs(Cp) for some k, then C, A Cp.
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Optimizing Prune (1)

The big cost in Prune is searching for a candidate permutation in
the subsumption test.

If the number of sequences with k 1s in outputs(C,) is greater
than that in outputs(Cp) for some k, then C, A Cp.

This very simple test actually eliminates some 70% unsuccessful
subsumption tests!
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Optimizing Prune (1)

“Where" sets

w(C, x, k) denotes the set of positions i such that there exists a
vector in outputs(C) containing k ones with x at position i.




Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Optimizing Prune (1)

“Where" sets

w(C, x, k) denotes the set of positions i such that there exists a
vector in outputs(C) containing k ones with x at position i.

If for some |w(C,, x, k)| > |w(Cp, x, k)| for some x and k, then
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Optimizing Prune (II)

“Where" sets

w(C, x, k) denotes the set of positions i such that there exists a
vector in outputs(C) containing k ones with x at position i.

Lemma 2

If for some |w(C,, x, k)| > |w(Cp, x, k)| for some x and k, then
G, £ Cp.

| \

Lemma 3
If w(outputs(C,)) C outputs(Cp), then
m(w(Cs, x, k)) € w(Cp, x, k) for all x and k.

N
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Network representation

For efficiency, we store not only the comparator networks (seen as
sequences as comparators, but also their set of outputs:

@ each output is represented as an integer (the sequence “read”
as a binary number)

@ outputs are partitioned according to the number of 1s

@ each partition is annotated with its “where” sets
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Network representation

For efficiency, we store not only the comparator networks (seen as
sequences as comparators, but also their set of outputs:

@ each output is represented as an integer (the sequence “read”
as a binary number)

@ outputs are partitioned according to the number of 1s
@ each partition is annotated with its “where” sets

This data is computed at generation time, so that it will be readily
available every time it is needed for a subsumption test.
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Parallelization (I)

With all these optimizations in place, the known values for S,
(n < 8) could be checked in under one day.

@ n = 6: two seconds
@ n = T7: two minutes

@ n = 8: several hours
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Parallelization (I)

With all these optimizations in place, the known values for S,
(n < 8) could be checked in under one day.

@ n = 6: two seconds
@ n = T7: two minutes
@ n = 8: several hours

A rough estimate of the computation time for n = 9 yielded 10-20
years.



Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Parallelization (I)

With all these optimizations in place, the known values for S,
(n < 8) could be checked in under one day.

@ n = 6: two seconds
@ n = T7: two minutes
@ n = 8: several hours

A rough estimate of the computation time for n = 9 yielded 10-20
years.

With a 288-core cluster available, the precise computation of Sg
became feasible for the first time.
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Parallelization (II)

Parallel-Generate

(Input RY; output N )

@ split R} into sets Ry, ...
e for||Pie{l,...,p} do
o S; = Generate(R;)

n _ 50
o Ny = Lﬂlfigp Si;

The Generate-and-Prune approach

Conclusions & Future Work

Generate

o=[]
split ,::>|:|merge
H':>|:|r:>|:|':>

Q= |;| N

Rk
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Parallelization (III)

Parallel-Prune (Input NJ; output R})

e split NV into sets S1,..., S,
e for||Pie{l,...,p}: S; =Prune(S;)
e for je{1,...,p} do

o for|[P71i#j: S; =Remove(S;,S;)

n __ o0
° Ry = L‘.‘J1§i§p Si;

Prune Remove Remove RemoveRemove

[|l=>0=>0=0=>0=>0
spIitD,:>D,:>D,:>D,:>D,:>Dmerge
: [|l=>0=>0=0=>0=0

v [|l=>0=>0=0=>0=0
k S; S; S; Si Si Si

Rk
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Results & Future work

@ Exact values of Sg and Sig

@ Technique may be adapted to settle higher values which are
still unknown

@ Algorithms may be useful for finding
smaller-than-currently-known networks

@ Further theoretical results may help proving optimality of best
known upper bounds



Thank you!
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