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Size

This net has 5 channels and 9 comparators.
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A sorting network

Some of the comparisons may be performed in parallel:

Depth

This net has 5 layers.

See Donald E. Knuth, The Art of Computer Programming, vol. 3
for more details
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The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (Sn)?

The depth problem

What is the minimal number of layers on a sorting network on
n channels (Tn)?
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The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (Sn)?

The depth problem

What is the minimal number of layers on a sorting network on
n channels (Tn)?

Knuth 1973

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sn 3 5 9 12 16 19
25 29 35 39 45 51 56 60
23 27 31 35 39 43 47 51

Tn 3 3 5 5 6 6
7 7 8 8 9 9 9 9
6 6 6 6 6 6 6 6
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The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (Sn)?

The depth problem

What is the minimal number of layers on a sorting network on
n channels (Tn)?

Parberry 1991

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sn 3 5 9 12 16 19
25 29 35 39 45 51 56 60
23 27 31 35 39 43 47 51

Tn 3 3 5 5 6 6 7 7
8 8 9 9 9 9
7 7 7 7 7 7
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The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (Sn)?

The depth problem

What is the minimal number of layers on a sorting network on
n channels (Tn)?

Codish, Cruz-Filipe, Frank & Schneider-Kamp (CCFS) 2014

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sn 3 5 9 12 16 19 25 29
35 39 45 51 56 60
33 37 41 45 49 53

Tn 3 3 5 5 6 6 7 7 8 8 9 9 9 9
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An exponential explosion

Parberry (1991)

exploration of symmetries
fixed first layer
200 hours of computation

Bundala & Závodný (2013)

Techniques not directly applicable to the size problem

CCFS (2014)
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An exponential explosion

Parberry (1991)

Bundala & Závodný (2013)

exploration of symmetries
reduced set of two-layer prefixes
intensive SAT-solving

Techniques not directly applicable to the size problem

CCFS (2014)
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An exponential explosion

Parberry (1991)

Bundala & Závodný (2013)

Techniques not directly applicable to the size problem

36 possibilities for each comparator when n = 9, so
3624 ≈ 2.2× 1037 24-comparator nets

2620 possibilities for each layer when n = 9, so
26206 ≈ 3.2× 1020 6-layer networks

CCFS (2014)
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An exponential explosion

Parberry (1991)

Bundala & Závodný (2013)

Techniques not directly applicable to the size problem

CCFS (2014)

generate-and-prune
combine brute-force generation with optimal (?) reduction
compromise between time and space
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Comparator networks

A (standard) comparator network C on n channels is a
sequence of pairs (i , j) (the comparators) such that
1 ≤ i < j ≤ n.

The output of C on a sequence ~x is denoted C (~x).

The set of outputs of C is outputs(C ) = {C (~x) | ~x ∈ {0, 1}n}.

A comparator network C is a sorting network if all elements of
outputs(C ) are sorted.
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Well-known results

0–1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in
{0, 1}n.

Output lemma (Parberry 1991)

Let C and C ′ be comparator networks such that
outputs(C ) ⊆ outputs(C ′). If C ′;N is a sorting network, then so is
C ;N.

{0, 1}n C // X⊆

{0, 1}n C ′ // X ′
N // S
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Permutations (Bundala & Závodný 2013)

Permuted output lemma (I)

If:

C and C ′ are standard comparator networks of depth 2;

π is a permutation of 1..n mapping outputs(C ) into
outputs(C ′);

C ′ can be extended to a sorting network;

then C can also be extended to a standard sorting network of the
same depth.

{0, 1}n C // X

π��
{0, 1}n C ′ // X ′

N // S
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Permuted output lemma (I)

If:

C and C ′ are standard comparator networks of depth 2;

π is a permutation of 1..n mapping outputs(C ) into
outputs(C ′);

C ′ can be extended to a sorting network;

then C can also be extended to a standard sorting network of the
same depth.

{0, 1}n C // X

π��

π−1(N)// π−1(S)

{0, 1}n C ′ // X ′
N // S



Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Permutations revisited (CCFS 2014)

Permuted output lemma (II)

If:

C and C ′ are standard comparator networks of equal size;

π is a permutation of 1..n mapping outputs(C ) into
outputs(C ′);

C ′ can be extended to a sorting network;

then C can also be extended to a standard sorting network of the
same size.

We say that C � C ′ when π(outputs(C )) ⊆ outputs(C ′) for some
permutation π.
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The algorithms (I)

Generate-and-prune

1 (Init) Set Rn
0 = {∅} and k = 0.

2 Repeat:

(Generate) Extend every net in Rn
k with one comparator in

every possible way. Let Nn
k+1 be the set of all results.

(Prune) Keep only one element of each minimal equivalence
class w.r.t. the transitive closure of �. Let Rn

k+1 be the
resulting set.
Increase k .

until k > 1 and |Rn
k | = 1.

(If C is a sorting network on n channels of size k , then |Rn
k | = 1.)
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The algorithms (II)

Generate (Input Rn
k ; output Nn

k+1)

(Init) Nn
k+1 = ∅, Cn = {(i , j) | 1 ≤ i < j ≤ n}

for C ∈ Rn
k and c ∈ Cn: Nn

k+1 = Nn
k+1 ∪ {C ; c}

Prune (Input Nn
k ; output Rn

k )

(Init) Rn
k = ∅

for C ∈ Nn
k do

for C ′ ∈ Rn
k : if (C ′ � C ) then mark C

if (not marked(C )) then

for C ′ ∈ Rn
k : if (C � C ′) then Rn

k = Rn
k \ {C ′}

Rn
k = Rn

k ∪ {C}
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The algorithms (II)

Generate (Input Rn
k ; output Nn

k+1)

(Init) Nn
k+1 = ∅, Cn = {(i , j) | 1 ≤ i < j ≤ n}

for C ∈ Rn
k and c ∈ Cn: Nn

k+1 = Nn
k+1 ∪ {C ; c}

Prune (Input Nn
k ; output Rn

k )

(Init) Rn
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Optimizing Generate

Redundant comparators

A comparator (i , j) is redundant w.r.t. C if xi ≤ xj for every
~x ∈ outputs(C ).

Redundant comparators:

do nothing;

may not occur in minimal-size sorting networks;

are easy to detect;

can be avoided at generation time.

Generate is much faster than Prune, so it pays off to do this test
at generation time.
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Optimizing Prune

The big cost in Prune is searching for a candidate permutation in
the subsumption test.

outputs(Ca) outputs(Cb)
0000 0001 0011 0111 1111 0000 0001 0011 0111 1111

0010 1100 0101

A cardinality test shows that no permutation can map
{0001, 0010} into {0001}, so Ca 6� Cb. Such a test eliminates 70%
of unsuccessful subsumptions.

Analysis of positions containing ‘1’ shows that no permutation can
map {0011, 1100} into {0011, 0101}, so again Ca 6� Cb. Such a
test eliminates 30% of the remaining unsuccessful subsumptions.

Also, this position analysis significantly restricts the search space of
possible permutations.
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Network representation

For efficiency, we store comparator networks with their sets of
outputs:

each output is represented as an integer

outputs are partitioned according to the number of 1s

each partition is annotated with its “where” sets

outputs(Ca)

0000
0001 0010
0011 1100
0111
1111

〈Ca, 〈〈{0}, {1, 2, 3, 4}, ∅}〉,
〈{8, 4}, {1, 2, 3, 4}, {3, 4}}〉,
〈{12, 3}, {1, 2, 3, 4}, {1, 2, 3, 4}}〉,
〈{14}, {1}, {2, 3, 4}}〉,
〈{15}, ∅, {1, 2, 3, 4}}〉〉〉

This data is computed at generation time, so that it will be readily
available every time it is needed for a subsumption test.
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What do we need to trust?

%% iterates over partitioned set of outputs

carriesInto(_,[],_).

carriesInto(P,[t(P1 ,_,_)|Part1],[t(P2 ,_,_)|Part2 ]) :-

mapsInto(P,P1,P2),

carriesInto(P,Part1 ,Part2 ).

%% iterates over outputs

mapsInto(_,[],_).

mapsInto(P,[X|P1],P2) :- permuted(P,X,Y), member(Y,P2),

mapsInto(P,P1,P2).

%% applies permutation

permuted(P,N,M) :- permuted(P,0,N,0,M).

permuted ([],_,_,M,M).

permuted ([_|P],I,N,K,M) :- position(N,I,0), !,

I1 is I+1, permuted(P,I1,N,K,M).

permuted ([J|P],I,N,K,M) :- K1 is K+2**J, I1 is I+1,

permuted(P,I1,N,K1 ,M).
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Some numerology

Rn
k 3 4 5 6 7 8
1 1 1 1 1 1 1
2 2 3 3 3 3 3
3 1 4 6 7 7 7
4 2 11 17 19 20
5 1 10 36 51 57
6 7 53 141 189
7 6 53 325 648
8 4 44 564 2,088
9 1 23 678 5,703

10 8 510 11,669
11 4 280 16,095
12 1 106 13,305
13 33 6,675
14 11 2,216
15 6 503
16 1 77
17 18
18 9
19 1
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Parallelization (I)

With all these optimizations in place, the known values for Sn
(n ≤ 8) could be checked in under one day.

n = 6: two seconds

n = 7: two minutes

n = 8: several hours

A rough estimate of the computation time for n = 9 yielded 10–20
years. With a 288-thread cluster available, the precise computation
of S9 became feasible for the first time.
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Parallelization (II)

Parallel-Generate

(Input Rn
k ; output Nn

k+1)

split Rn
k into sets R1, . . . ,Rp

for||p i ∈ {1, . . . , p} do
Si = Generate(Ri )

Nn
k+1 =

⊎
1≤i≤p Si ;

Generate

split merge

Rn
k

Nn
k+1Ri Si
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Parallelization (III)

Parallel-Prune (Input Nn
k ; output Rn

k )

split Nn
k into sets S1, . . . ,Sp

for||p i ∈ {1, . . . , p}: Si = Prune(Si )

for j ∈ {1, . . . , p} do
for||p−1 i 6= j : Si = Remove(Si ,Sj)

Rn
k =

⊎
1≤i≤p Si ;

Prune RemoveRemove RemoveRemove

split merge

Nn
k

Rn
k

Si Si Si Si Si Si
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Master-Slave Parallelization - The Hard Way

for reasonable number of threads p

parallel runtime dominated by computation
overhead of master-slave parallelization tolerable

robustness over sophistication

round-robin strategy to distribute goals
busy waiting (aided by some sleeps)
goals distributed through shared file system
no instantiation of variables
all predicates must succeed

practical challenges

race conditions – empty files for synchronization
distributed memory – read and write from shared file system
limited disk space – use zlib for transparent (de-)compression



Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Master-Slave Parallelization - The Hard Way

for reasonable number of threads p

parallel runtime dominated by computation
overhead of master-slave parallelization tolerable

robustness over sophistication

round-robin strategy to distribute goals
busy waiting (aided by some sleeps)
goals distributed through shared file system
no instantiation of variables
all predicates must succeed

practical challenges

race conditions – empty files for synchronization
distributed memory – read and write from shared file system
limited disk space – use zlib for transparent (de-)compression



Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Master-Slave Parallelization - The Hard Way

for reasonable number of threads p

parallel runtime dominated by computation
overhead of master-slave parallelization tolerable

robustness over sophistication

round-robin strategy to distribute goals
busy waiting (aided by some sleeps)
goals distributed through shared file system
no instantiation of variables
all predicates must succeed

practical challenges

race conditions

– empty files for synchronization
distributed memory – read and write from shared file system
limited disk space – use zlib for transparent (de-)compression



Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Master-Slave Parallelization - The Hard Way

for reasonable number of threads p

parallel runtime dominated by computation
overhead of master-slave parallelization tolerable

robustness over sophistication

round-robin strategy to distribute goals
busy waiting (aided by some sleeps)
goals distributed through shared file system
no instantiation of variables
all predicates must succeed

practical challenges

race conditions – empty files for synchronization

distributed memory – read and write from shared file system
limited disk space – use zlib for transparent (de-)compression



Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Master-Slave Parallelization - The Hard Way

for reasonable number of threads p

parallel runtime dominated by computation
overhead of master-slave parallelization tolerable

robustness over sophistication

round-robin strategy to distribute goals
busy waiting (aided by some sleeps)
goals distributed through shared file system
no instantiation of variables
all predicates must succeed

practical challenges

race conditions – empty files for synchronization
distributed memory

– read and write from shared file system
limited disk space – use zlib for transparent (de-)compression



Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Master-Slave Parallelization - The Hard Way

for reasonable number of threads p

parallel runtime dominated by computation
overhead of master-slave parallelization tolerable

robustness over sophistication

round-robin strategy to distribute goals
busy waiting (aided by some sleeps)
goals distributed through shared file system
no instantiation of variables
all predicates must succeed

practical challenges

race conditions – empty files for synchronization
distributed memory – read and write from shared file system

limited disk space – use zlib for transparent (de-)compression



Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Master-Slave Parallelization - The Hard Way

for reasonable number of threads p

parallel runtime dominated by computation
overhead of master-slave parallelization tolerable

robustness over sophistication

round-robin strategy to distribute goals
busy waiting (aided by some sleeps)
goals distributed through shared file system
no instantiation of variables
all predicates must succeed

practical challenges

race conditions – empty files for synchronization
distributed memory – read and write from shared file system
limited disk space

– use zlib for transparent (de-)compression



Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Master-Slave Parallelization - The Hard Way

for reasonable number of threads p

parallel runtime dominated by computation
overhead of master-slave parallelization tolerable

robustness over sophistication

round-robin strategy to distribute goals
busy waiting (aided by some sleeps)
goals distributed through shared file system
no instantiation of variables
all predicates must succeed

practical challenges

race conditions – empty files for synchronization
distributed memory – read and write from shared file system
limited disk space – use zlib for transparent (de-)compression



Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Master-Slave Parallelization - The Slave

%% launch multiple clients with given thread id range

slave(FirstThread , LastThread) :-

findall(client(I),between(FirstThread ,LastThread ,I),Goals),

NumThreads is LastThread - FirstThread + 1,

concurrent(NumThreads , Goals , []).

%% client with thread id I

client(I) :-

goal_files(I, GI, RI), exists_file(RI), !,

see(GI), read(Goal), seen ,

(Goal = halt -> true; Goal),

delete_file(RI), delete_file(GI),

(Goal = halt -> true ; client(I)).

client(I) :- sleep(1), client(I).

%% helper

goal_files(I, GI, RI) :-

name(’goal’, G), name(’.’, D), name(I,II), name(’.ready’, R),

append ([G, D, II], GIName),

append(GIName , R, RIName),

name(A,AName), name(B, BName).
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Master-Slave Parallelization - The Master

%% distributed simplified variant of SWI -Prolog ’s concurrent /3

parallel(Procs , Goals) :- distribute (1, Procs , Goals).

distribute(_, Procs , []) :- !, wait(Procs ).

distribute(I, Procs , Goals) :-

goal_file_exists(I), !,

I1 is I mod Procs + 1, distribute(I1, Procs , Goals).

distribute(I, Procs , [Goal | Goals ]) :-

goal_files(I, GI, RI),

tell(GI), write_goal(Goal), told , tell(RI), told ,

distribute(I, Procs , Goals).

wait (0) :- !.

wait(I) :- goal_file_exists(I), !, sleep (1), wait(I).

wait(I) :- I1 is I-1, wait(I1).

%% helpers

write_goal(G) : - write_term(G, [quoted(true)]), writeln(’.’),

goal_file_exists(I) :- goal_files(I, GI, _), exists_file(GI).
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Wish List

better support for distributed computing

Erlang / Akka style?
MPI support?

better supoort for memory-intensive computations

file-backed data structures
distributed memory data structures

more transparent compression suport

built-in zlib-equivalents of see/1, seen/0, tell/1, told/0
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Independent Java Verifier

independent implementation of generate-and-prune

stupidly generate all comparator networks by nested for-loops
instead of search, use log file for pruning
check subsumptions in log before use
ensure acyclicity of reasoning
205 lines of Java code

all 123,599,036 subsumptions for n = 9 verified

generate-and-prune without search for n = 9 in 6 hours

verifier & logs available at:
http://imada.sdu.dk/~petersk/sn/

http://imada.sdu.dk/~petersk/sn/
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Results & Future work

Exact values of S9 and S10

Log-file that can be independently verified

Technique may be adapted to settle higher values which are
still unknown

Algorithms may be useful for finding
smaller-than-currently-known networks

Further theoretical results may help proving optimality of best
known upper bounds
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Thank you!
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