Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Proofs for Minimality of Sorting Networks
by Logic Programming

L. Cruz-Filipe! M. Codish? M. Frank?
P. Schneider-Kamp?

!Dept. Mathematics and Computer Science, Univ. Southern Denmark (Denmark)

2Ben-Gurion University of the Negev (Israel)

CICLOPS-WLPE Workshop
July 17th, 2014

QOutline

@ Sorting Networks in a Nutshell
© The Generate-and-Prune Approach
© Parallelization

@ Conclusions & Future Work

u]

o)
1

n
it
)
»
i)

@ Sorting Networks in a Nutshell

© The Generate-and-Prune Approach

© Parallelization

@ Conclusions & Future Work

«O>» «F»r « >

« =

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

A sorting network

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

A sorting network

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

A sorting network

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

A sorting network

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

A sorting network

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

A sorting network

This net has 5 channels and 9 comparators.

Some of the comparisons may be performed in parallel:

«O» «F»r « =

Er» «E>»

DA

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

A sorting network

Some of the comparisons may be performed in parallel:

11 L

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

A sorting network

Some of the comparisons may be performed in parallel:

1]
1 . l

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

A sorting network

Some of the comparisons may be performed in parallel:

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

A sorting network

Some of the comparisons may be performed in parallel:

This net has 5 layers.

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

A sorting network

Some of the comparisons may be performed in parallel:

This net has 5 /ayers.

See Donald E. Knuth, The Art of Computer Programming, vol. 3
for more details

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (S,)?

The depth problem

| A\

What is the minimal number of /ayers on a sorting network on
n channels (T,)?

\

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (S,)?

The depth problem

What is the minimal number of /ayers on a sorting network on
n channels (T,)?

A\

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (S,)?

The depth problem

What is the minimal number of /ayers on a sorting network on
n channels (T,)?

A\

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (S,)?

The depth problem

What is the minimal number of /ayers on a sorting network on
n channels (T,)?

A\

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (S,)?

The depth problem

What is the minimal number of /ayers on a sorting network on
n channels (T,)?

| A\

A\

Codish, Cruz-Filipe, Frank & Schneider-Kamp (CCFS) 2014

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16

35 39 45 51 56 60
S |3 5 9 12 16 19 25 29 33 37 41 45 49 53

T, |3 3 5 5 6 6 7 7 8 8 9 9 9 9

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

An exponential explosion

e Parberry (1991)
e exploration of symmetries
o fixed first layer
e 200 hours of computation

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

An exponential explosion

e Parberry (1991)
e Bundala & Zavodny (2013)

o exploration of symmetries
e reduced set of two-layer prefixes
e intensive SAT-solving

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

An exponential explosion

e Parberry (1991)
e Bundala & Zavodny (2013)
@ Techniques not directly applicable to the size problem

36 possibilities for each comparator when n =9, so
3624 ~ 2.2 x 1037 24-comparator nets

2620 possibilities for each layer when n =9, so
2620° ~ 3.2 x 10%° 6-layer networks

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

An exponential explosion

Parberry (1991)

Bundala & Zavodny (2013)

Techniques not directly applicable to the size problem
CCFS (2014)

o generate-and-prune
o combine brute-force generation with optimal (?) reduction
e compromise between time and space

@ Sorting Networks in a Nutshell

© The Generate-and-Prune Approach

© Parallelization

@ Conclusions & Future Work

«O>» «F»r « >

« =

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Comparator networks

@ A (standard) comparator network C on n channels is a
sequence of pairs (7, /) (the comparators) such that
1<i<j<n

@ The output of C on a sequence X is denoted C(X).
@ The set of outputs of C is outputs(C) = {C(X) | ¥ € {0,1}"}.

@ A comparator network C is a sorting network if all elements of
outputs(C) are sorted.

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in

(0,1},

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in

(0,1},

“C is a sorting network on n channels” is co-NP (complete).

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in

(0,1},

Output lemma (Parberry 1991)

Let C and C’ be comparator networks such that
outputs(C) C outputs(C’). If C’; N is a sorting network, then so is
C:N.

v

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in

(0,1},

Output lemma (Parberry 1991)

Let C and C’ be comparator networks such that
outputs(C) C outputs(C’). If C’; N is a sorting network, then so is
C:N.

v

{0,1}" £~ X
N
o1 e x N

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in

(0,1},

Output lemma (Parberry 1991)

Let C and C’ be comparator networks such that
outputs(C) C outputs(C’). If C’; N is a sorting network, then so is
C:N.

v

0,1} > x-P.5s
IN
0,13 x5

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Permutations (Bundala & Zavodny 2013)

Permuted output lemma (1)

If:

@ C and C’ are standard comparator networks of depth 2;
@ 7 is a permutation of 1..n mapping outputs(C) into
outputs(C’);
@ C’ can be extended to a sorting network;
then C can also be extended to a standard sorting network of the

same depth.

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Permutations (Bundala & Zavodny 2013)

Permuted output lemma (1)

If:
@ C and C’ are standard comparator networks of depth 2;
@ 7 is a permutation of 1..n mapping outputs(C) into
outputs(C’);
@ C’ can be extended to a sorting network;
then C can also be extended to a standard sorting network of the

same depth.

{0,137 S~ x

oo x N g

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Permutations (Bundala & Zavodny 2013)

Permuted output lemma (1)

If:
@ C and C’ are standard comparator networks of depth 2;
@ 7 is a permutation of 1..n mapping outputs(C) into
outputs(C’);
@ C’ can be extended to a sorting network;
then C can also be extended to a standard sorting network of the

same depth.

|
(0,137 <= x —-1s)

s

1" < ox N s

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Permutations (Bundala & Zavodny 2013)

Permuted output lemma (1)

If:
@ C and (' are standard comparator networks of depth 2;
@ 7 is a permutation of 1..n mapping outputs(C) into
outputs(C’);
@ C’ can be extended to a sorting network;
then C can also be extended to a standard sorting network of the

same depth.

|
(0,137 <= x —-1s)

s

1" < ox N s

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Permutations revisited (CCFS 2014)

Permuted output lemma (I1)

If:

@ C and C’ are standard comparator networks of equal size;
@ 7 is a permutation of 1..n mapping outputs(C) into
outputs(C’);
@ C’ can be extended to a sorting network;
then C can also be extended to a standard sorting network of the

same size.

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Permutations revisited (CCFS 2014)

Permuted output lemma (I1)

If:

@ C and C’ are standard comparator networks of equal size;
@ 7 is a permutation of 1..n mapping outputs(C) into
outputs(C’);
@ C’ can be extended to a sorting network;
then C can also be extended to a standard sorting network of the
same size.)

We say that C < C’ when m(outputs(C)) C outputs(C’) for some
permutation .

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

The algorithms (1)

Generate-and-prune

@ (Init) Set R§ = {0} and k = 0.

© Repeat:
o (Generate) Extend every net in R} with one comparator in
every possible way. Let N/ ; be the set of all results.
o (Prune) Keep only one element of each minimal equivalence
class w.r.t. the transitive closure of <. Let R}, be the
resulting set.

o Increase k.

until k > 1 and |R]| = 1.

(If C is a sorting network on n channels of size k, then |R]| =1.)

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

The algorithms (11)

Generate (Input R; output N)

o (Init) N7, =0, G ={(i,j)[1<i<j<n}
o for C € Rl and c € C,: NP, = NP, U{C;c}

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

The algorithms (11)

Generate (Input R; output N)

o (Init) N2,y =0, Co = {(ir)) | 1< i <j<n}
o for C€ Ry and c € Cy: N, = N7, U{C;c}

\

Prune (Input NJ; output R})
o (Init) R} =10
e for C € N do
o for C' € R}: if (C’ < C) then mark C
o if (not_marked(C)) then
o for C' € R}: if (C X C') then R = R} \ {C'}
o R =RIU{C}

\

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Optimizing Generate

Redundant comparators

A comparator (i,) is redundant w.r.t. C if x; < x; for every
X € outputs(C).

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Optimizing Generate

Redundant comparators

A comparator (i,) is redundant w.r.t. C if x; < x; for every
X € outputs(C).

Redundant comparators:

do nothing;
may not occur in minimal-size sorting networks;

are easy to detect;

can be avoided at generation time.

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Optimizing Generate

Redundant comparators

A comparator (i,) is redundant w.r.t. C if x; < x; for every
X € outputs(C).

Redundant comparators:
@ do nothing;
@ may not occur in minimal-size sorting networks;
@ are easy to detect;
@ can be avoided at generation time.

Generate is much faster than Prune, so it pays off to do this test
at generation time.

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Optimizing Prune

The big cost in Prune is searching for a candidate permutation in
the subsumption test.

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Optimizing Prune

The big cost in Prune is searching for a candidate permutation in
the subsumption test.

outputs(C,) I outputs(Cp)
0000 | 0001 | 0011 | O111 | 1111 || OOOO | OOO1 | 0OO11 | O111 | 1111
0010 | 1100 0101

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Optimizing Prune

The big cost in Prune is searching for a candidate permutation in
the subsumption test.

outputs(C,) I outputs(Cp)
0000 | 0001 | 0011 | O111 | 1111 || OOOO | OOO1 | 0OO11 | O111 | 1111
0010 | 1100 0101

A cardinality test shows that no permutation can map
{0001, 0010} into {0001}, so C; £ Cp. Such a test eliminates 70%
of unsuccessful subsumptions.

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Optimizing Prune

The big cost in Prune is searching for a candidate permutation in
the subsumption test.

outputs(C,) I outputs(Cp)
0000 | 0001 | 0011 | O111 | 1111 || OOOO | OOO1 | 0OO11 | O111 | 1111
0010 | 1100 0101

A cardinality test shows that no permutation can map
{0001, 0010} into {0001}, so C; £ Cp. Such a test eliminates 70%
of unsuccessful subsumptions.

Analysis of positions containing ‘1" shows that no permutation can
map {0011, 1100} into {0011,0101}, so again C; A Cp. Such a
test eliminates 30% of the remaining unsuccessful subsumptions.

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Optimizing Prune

The big cost in Prune is searching for a candidate permutation in
the subsumption test.

outputs(C,) I outputs(Cp)
0000 | 0001 | 0011 | O111 | 1111 || OOOO | OOO1 | 0OO11 | O111 | 1111
0010 | 1100 0101

A cardinality test shows that no permutation can map
{0001, 0010} into {0001}, so C; £ Cp. Such a test eliminates 70%
of unsuccessful subsumptions.

Analysis of positions containing ‘1" shows that no permutation can
map {0011, 1100} into {0011,0101}, so again C; A Cp. Such a
test eliminates 30% of the remaining unsuccessful subsumptions.

Also, this position analysis significantly restricts the search space of
possible permutations.

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Network representation

For efficiency, we store comparator networks with their sets of
outputs:

@ each output is represented as an integer
@ outputs are partitioned according to the number of 1s

@ each partition is annotated with its “where” sets

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Network representation

For efficiency, we store comparator networks with their sets of
outputs:

@ each output is represented as an integer
@ outputs are partitioned according to the number of 1s

@ each partition is annotated with its “where” sets

outputs(Cy) (C,, (({0},1{1,2,3,4},0}),
{87 4}? {1’ 2’ 37 4}7 {37 4}}>7

{

{

0001 | 0010

0011 | 1100 2{12,3}, {1,2,3,4},{1,2,3,4}}),
{

{14},{1},{2,3,4}}),
{15},0,{1,2,3,4}})))

0111
1111

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Network representation

For efficiency, we store comparator networks with their sets of
outputs:

@ each output is represented as an integer
@ outputs are partitioned according to the number of 1s

@ each partition is annotated with its “where” sets

outputs(C;) (C,, (({0},1{1,2,3,4},0}),
({8,4},{1,2,3,4},{3,4}}),

0001 | 0010

0011 | 1100 ({12,3},{1,2,3,4},{1,2,3,4}}),

0111 ({14},{1},{2,3,4}}),

1111 ({15},0,{1,2,3,4}})))

This data is computed at generation time, so that it will be readily
available every time it is needed for a subsumption test.

Q>

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

What do we need to trust?

A% iterates over partitioned set of outputs
carriesInto(_,[],_).
carriesInto(P,[t(P1,_,_)|Part1],[t(P2,_,_)|Part2]) :-
mapsInto(P,P1,P2),
carriesInto(P,Partl ,Part2).

A% iterates over outputs

mapsInto(_,[],_).

mapsInto(P,[X|P1],P2) :- permuted(P,X,Y), member(Y,P2),
mapsInto (P,P1,P2).

%% applies permutation
permuted(P,N,M) :- permuted(P,0,N,0,M).

permuted ([1,_,_,M,M).

permuted([_|P],I,N,K,M) :- position(N,I,0), !,
I1 is I+1, permuted(P,I1,N,K,M).
permuted ([J|P],I,N,K,M) :- K1 is K+2%xJ, I1 is I+1,

permuted (P,I1,N,K1,M).

Sorting Networks in a Nutshell

Some numerology

The Generate-and-Prune Approach

Parallelization Conclusions & Future Work

RI|3|4] 5] 6] 7 8
T[1]1| 1] 1| 1 1
2(213] 3| 3| 3 3
3|1)a] 6| 7] 7 7
4 2|11 |17 | 19 20
5 1]10|36]| 51 57
6 753|141 189
7 6 | 53 | 325 648
8 4| 44 | 564 | 2,088
9 1|23 |678]| 5,703

10 8 | 510 | 11,669

11 4 | 280 | 16,095

12 1| 106 | 13,305

13 33| 6,675

14 11| 2,216

15 6 503

16 1 77

17 18

18 9

19 1

@ Sorting Networks in a Nutshell

9 The Generate-and-Prune Approach

© Parallelization

@ Conclusions & Future Work

«O>r «Fr <

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Parallelization (I)

With all these optimizations in place, the known values for S,
(n < 8) could be checked in under one day.

@ n = 6: two seconds
@ n = T7: two minutes

@ n = 8: several hours

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Parallelization (I)

With all these optimizations in place, the known values for S,
(n < 8) could be checked in under one day.

@ n = 6: two seconds
@ n = T7: two minutes
@ n = 8: several hours

A rough estimate of the computation time for n = 9 yielded 10-20
years. With a 288-thread cluster available, the precise computation
of Sg became feasible for the first time.

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Parallelization (II)

Generate

Parallel-Generate - |:|
(Input RY; output N) =
lit
o split R into sets Ry, ..., R, H O ':>|:|’,“:e§e
e for|[Pie{l,...,p} do o=[]
o S; = Generate(R;) k
Q= |;| N

n _ 50
o Ny = Lﬂlfigp Si;

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Parallelization (III)

Parallel-Prune (Input NJ; output R})
e split NV into sets S1,..., S,
e for||Pie{l,...,p}: S; =Prune(S;)
e for je{1,...,p} do
o for|[P71i#j: S; =Remove(S;,S;)

n __ o0
° Ry = L‘.‘J1§i§p Si;

Prune Remove Remove RemoveRemove

[|l=>0=>0=0=>0=>0
spIitD,:>D,:>D,:>D,:>D,:>Dmerge
: [|l=>0=>0=0=>0=0

v [|l=>0=>0=0=>0=0
k S; S; S; Si Si Si

Rk

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Master-Slave Parallelization - The Hard Way

@ for reasonable number of threads p

o parallel runtime dominated by computation
o overhead of master-slave parallelization tolerable

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Master-Slave Parallelization - The Hard Way

@ for reasonable number of threads p

o parallel runtime dominated by computation
o overhead of master-slave parallelization tolerable

@ robustness over sophistication

e round-robin strategy to distribute goals
busy waiting (aided by some sleeps)

goals distributed through shared file system
no instantiation of variables

all predicates must succeed

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Master-Slave Parallelization - The Hard Way

@ for reasonable number of threads p

o parallel runtime dominated by computation
o overhead of master-slave parallelization tolerable

@ robustness over sophistication

e round-robin strategy to distribute goals
busy waiting (aided by some sleeps)

goals distributed through shared file system
no instantiation of variables

all predicates must succeed

@ practical challenges
e race conditions

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Master-Slave Parallelization - The Hard Way

@ for reasonable number of threads p

o parallel runtime dominated by computation
o overhead of master-slave parallelization tolerable

@ robustness over sophistication

e round-robin strategy to distribute goals
busy waiting (aided by some sleeps)

goals distributed through shared file system
no instantiation of variables

all predicates must succeed

@ practical challenges
e race conditions — empty files for synchronization

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Master-Slave Parallelization - The Hard Way

@ for reasonable number of threads p

o parallel runtime dominated by computation
o overhead of master-slave parallelization tolerable

@ robustness over sophistication

e round-robin strategy to distribute goals
busy waiting (aided by some sleeps)

goals distributed through shared file system
no instantiation of variables

all predicates must succeed

@ practical challenges

e race conditions — empty files for synchronization
o distributed memory

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Master-Slave Parallelization - The Hard Way

@ for reasonable number of threads p

o parallel runtime dominated by computation
o overhead of master-slave parallelization tolerable

@ robustness over sophistication

e round-robin strategy to distribute goals
busy waiting (aided by some sleeps)

goals distributed through shared file system
no instantiation of variables

all predicates must succeed

@ practical challenges

e race conditions — empty files for synchronization
o distributed memory — read and write from shared file system

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Master-Slave Parallelization - The Hard Way

@ for reasonable number of threads p

o parallel runtime dominated by computation
o overhead of master-slave parallelization tolerable

@ robustness over sophistication

e round-robin strategy to distribute goals
busy waiting (aided by some sleeps)

goals distributed through shared file system
no instantiation of variables

all predicates must succeed

@ practical challenges
e race conditions — empty files for synchronization
o distributed memory — read and write from shared file system
e limited disk space

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Master-Slave Parallelization - The Hard Way

@ for reasonable number of threads p

o parallel runtime dominated by computation
o overhead of master-slave parallelization tolerable

@ robustness over sophistication

e round-robin strategy to distribute goals
busy waiting (aided by some sleeps)

goals distributed through shared file system
no instantiation of variables

all predicates must succeed

@ practical challenges
e race conditions — empty files for synchronization
o distributed memory — read and write from shared file system
o limited disk space — use z1ib for transparent (de-)compression

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work
Master-Slave Parallelization - The Slave

A% launch multiple clients with given thread id Tange

slave (FirstThread, LastThread) :-
findall(client (I),between(FirstThread,LastThread,I),Goals),
NumThreads is LastThread - FirstThread + 1,
concurrent (NumThreads, Goals, []).

%% client with thread id I

client (I) :-
goal_files(I, GI, RI), exists_file(RI), !
see(GI), read(Goal), seen,
(Goal = halt -> true; Goal),
delete_file(RI), delete_file(GI),
(Goal = halt -> true ; client(I)).

s

client (I) :- sleep(l), client(I).

A% helper
goal_files(I, GI, RI) :-
name (’goal’, G), name(’.’, D), name(I,II), name(’.ready’, R),
append ([G, D, II], GIName),
append (GIName, R, RIName),
name (A, AName), name (B, BName).

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work
Master-Slave Parallelization - The Master

A% distributed simplified wvariant of SWI-Prolog’s concurrent/3
parallel (Procs, Goals) :- distribute(l, Procs, Goals).

distribute(_, Procs, []) :- !, wait(Procs).

distribute (I, Procs, Goals) :-
goal_file_exists(I), !,
I1 is I mod Procs + 1, distribute(I1l, Procs, Goals).

distribute (I, Procs, [Goal | Goals]) :-
goal_files(I, GI, RI),
tell(GI), write_goal(Goal), told, tell(RI), told,
distribute (I, Procs, Goals).

wait (0) :- .
wait(I) :- goal_file_exists(I), !, sleep(1l), wait(I).
wait(I) :- I1 is I-1, wait(I1l).

A% helpers
write_goal(G) : - write_term(G, [quoted(true)]), writeln(’.’),

goal_file_exists(I) :- goal_files(I, GI, _), exists_file(GI).

o Erlang / Akka style?

@ better support for distributed computing

o MPI support?

«O» «Fr « =>»

« =

DA

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Wish List

@ better support for distributed computing

o Erlang / Akka style?
o MPI support?

@ better supoort for memory-intensive computations

o file-backed data structures
o distributed memory data structures

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Wish List

@ better support for distributed computing

o Erlang / Akka style?
o MPI support?

@ better supoort for memory-intensive computations

o file-backed data structures
o distributed memory data structures

@ more transparent compression suport
e built-in zlib-equivalents of see/1, seen/0, tell/1, told/0

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Independent Java Verifier

@ independent implementation of generate-and-prune

stupidly generate all comparator networks by nested for-loops
instead of search, use log file for pruning

check subsumptions in log before use

ensure acyclicity of reasoning

205 lines of Java code

http://imada.sdu.dk/~petersk/sn/

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Independent Java Verifier

@ independent implementation of generate-and-prune

stupidly generate all comparator networks by nested for-loops
instead of search, use log file for pruning

check subsumptions in log before use

ensure acyclicity of reasoning

205 lines of Java code

@ all 123,599,036 subsumptions for n = 9 verified

@ generate-and-prune without search for n =9 in 6 hours

http://imada.sdu.dk/~petersk/sn/

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Independent Java Verifier

@ independent implementation of generate-and-prune
e stupidly generate all comparator networks by nested for-loops
instead of search, use log file for pruning
check subsumptions in log before use
ensure acyclicity of reasoning
205 lines of Java code

@ all 123,599,036 subsumptions for n = 9 verified

@ generate-and-prune without search for n =9 in 6 hours

o verifier & logs available at:
http://imada.sdu.dk/~petersk/sn/

http://imada.sdu.dk/~petersk/sn/

@ Sorting Networks in a Nutshell

© The Generate-and-Prune Approach

© Parallelization

@ Conclusions & Future Work

«O>» «F»r « >

« =

Sorting Networks in a Nutshell The Generate-and-Prune Approach Parallelization Conclusions & Future Work

Results & Future work

@ Exact values of Sg and Sig

o Log-file that can be independently verified

@ Technique may be adapted to settle higher values which are
still unknown

@ Algorithms may be useful for finding
smaller-than-currently-known networks

@ Further theoretical results may help proving optimality of best
known upper bounds

Thank you!

	Sorting Networks in a Nutshell
	The Generate-and-Prune Approach
	Parallelization
	Conclusions & Future Work

