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Size

This net has 5 channels and 9 comparators.
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A sorting network

Some of the comparisons may be performed in parallel:

Depth

This net has 5 layers.

See Donald E. Knuth, The Art of Computer Programming, vol. 3
for more details
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The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (Sn)?

The depth problem

What is the minimal number of layers on a sorting network on
n channels (Tn)?
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The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (Sn)?

The depth problem

What is the minimal number of layers on a sorting network on
n channels (Tn)?

Knuth 1973

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Tn 3 3 5 5 6 6
7 7 8 8 9 9 9 9 11
6 6 6 6 6 6 6 6 6
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The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (Sn)?

The depth problem

What is the minimal number of layers on a sorting network on
n channels (Tn)?

Parberry 1991

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Tn 3 3 5 5 6 6 7 7
8 8 9 9 9 9 11
7 7 7 7 7 7 7
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The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (Sn)?

The depth problem

What is the minimal number of layers on a sorting network on
n channels (Tn)?

Bundala & Závodný 2013

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Tn 3 3 5 5 6 6 7 7 8 8 9 9 9 9
11
9
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An exponential explosion

Upper bounds obtained by concrete examples (1960s)

Lower bounds obtained by mathematical arguments

HUGE number of nets

Parberry (1991)

Bundala & Závodný (2013)

These techniques do not scale for T17

≈ 211× 106 possibilities for each layer when n = 17

These techniques are not directly applicable to the size
problem
36 possibilities for each comparator when n = 9, so
3624 ≈ 2.2× 1037 24-comparator nets
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exploration of symmetries
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Upper bounds obtained by concrete examples (1960s)

Lower bounds obtained by mathematical arguments

HUGE number of nets

Parberry (1991)

Bundala & Závodný (2013)

exploration of symmetries
reduced set of two-layer prefixes
intensive SAT-solving

These techniques do not scale for T17

≈ 211× 106 possibilities for each layer when n = 17

These techniques are not directly applicable to the size
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36 possibilities for each comparator when n = 9, so
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Comparator networks

A comparator network C on n wires is a sequence of comparators
(i , j) with 1 ≤ i < j ≤ n.

The output of C on a sequence ~x = x1 . . . xn is denoted C (~x).

The set of binary outputs of C is
outputs(C ) = {C (~x) | x ∈ {0, 1}n}.

A comparator network C is a sorting network if C (~x) is sorted for
every input ~x .
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Well-known results

0–1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in
{0, 1}n.
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Well-known results

0–1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in
{0, 1}n.

Proof

The direct implication is straightforward. For the converse,
consider all sequences with k or k + 1 zeros. If C sorts them all,
then it must always place the (k + 1)-th smallest element of its
input in the right place.
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Well-known results

0–1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in
{0, 1}n.

“C is a sorting network on n channels” is co-NP (complete).
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Well-known results

0–1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in
{0, 1}n.

Output lemma (Parberry 1991)

Let C and C ′ be comparator networks such that
outputs(C ) ⊆ outputs(C ′). If C ′;N is a sorting network, then so is
C ;N.

Corollary 1

There is a minimal-depth sorting network on n channels whose first
layer contains

⌊
n
2

⌋
comparators.
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Well-known results

0–1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in
{0, 1}n.

Output lemma (Parberry 1991)

Let C and C ′ be comparator networks such that
outputs(C ) ⊆ outputs(C ′). If C ′;N is a sorting network, then so is
C ;N.

Corollary 2

There is a minimal-depth sorting network on n channels whose first
layer Fn contains the comparators (1, 2), (3, 4), (5, 6), &c.
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Equivalence

Equivalence of networks

Two standard networks C and C ′ are equivalent if there is a
permutation π of 1..n such that C ′ can be obtained from C by
renumbering its wires according to π and normalizing the result.
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Permutations (Bundala & Závodný 2013)

Permuted output lemma

C and C ′ are two-layer standard comparator networks;

π is a permutation of 1..n mapping outputs(C ) into
outputs(C ′);

C ′ can be extended to a sorting network;

then C can also be extended to a standard sorting network of the
same depth.
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Permutations (Bundala & Závodný 2013)

Permuted output lemma

C and C ′ are two-layer standard comparator networks;

π is a permutation of 1..n mapping outputs(C ) into
outputs(C ′);

C ′ can be extended to a sorting network;

then C can also be extended to a standard sorting network of the
same depth.

Proof

{0, 1}n C // X

π��

π−1(N)// π−1(S)

{0, 1}n C ′ // X ′
N // S
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Finding the value of T13

Saturation

Saturation is a syntactic criterion for two-layer networks. Bundala
& Závodný prove that it is enough to consider saturated networks.

Reflection

(Vertical) reflection of a comparator network produces a “dual”

net: if input ~x goes to ~y , then ~xD goes to ~yD . A two-layer network
can be extended to a sorting network of depth d iff the same holds
for its reflection.
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Finding the value of T13

The strategy

1 Generate all saturated two-layer networks with first layer F13.

2 Remove equivalent nets.

3 Remove nets subsumed by others.

4 Remove reflected nets.

5 Use a SAT-solver to find out if the remaining nets can be
extended to a sorting network.

n 5 6 7 8 9 10 11 12 13

|Gn| 26 76 232 764 2620 9496 35696 140152 568504
|Sn| 10 51 74 513 700 6345 8174 93255 113008

|Gn/≈| 18 28 74 101 295 350 1134 1236 4288
|Sn/≈| 8 29 100 341 1155
red. 6 6 14 15 37 27 88 70 212
|Rn| 4 5 8 12 22 21 28 50 118
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And for higher n?

This approach does not scale.

Computing equivalence of nets is very expensive (and not working
correctly).

Checking output subsumption is even worse (there are 2n outputs,
22

n
possible sets of outputs, and n! permutations).

Furthermore, T13 = T14 = T15 = T16.

To go beyond these values, we need different techniques.
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The general idea

Comparator networks can be represented by labeled graphs (Choi
& Moon 2002), where each comparator is a node and there is an
edge from vi to vj labeled min (max) if the minimum (maximum)
output of vi is an input to vj .

Equivalence theorem

C ≈ C ′ iff GC ≈ GC ′ .

But we want to bypass graphs altogether. Can we find a way to
generate a set N of nets such that:

for every two-layer comparator network C with first layer Fn
there is C ′ ∈ N such that C ≈ C ′;

for every C ,C ′ ∈ N , C 6≈ C ′;

in an efficient way?
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Idea: represent two layer-networks by words, corresponding to
paths in their graphs. (But avoid graphs altogether.)
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Word representation for two-layer networks

Idea: represent two layer-networks by words, corresponding to
paths in their graphs. (But avoid graphs altogether.)

Every net generates a unique word, and every well-formed word
generates a unique net. The functions net-to-word and word-to-net
form an adjunction.
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A regular language for words

Word ::= Head | Stick | Cycle

Head ::= 0(12 + 21)∗

Stick ::= (12 + 21)+

Cycle ::= 12(12 + 21)∗(1 + 2)

Generating all words and filtering to obtain only the
lexicographically smallest is very easy for the relevant values of n.
Two-layer comparator networks can be represented by multi-sets of
words. By choosing a canonical representation of multi-sets, we
can easily generate exactly one representative for all two-layer
networks with first layer Fn modulo equivalence.
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Saturation, revisited [I]

Saturation

Saturation is a syntactic criterion for two-layer networks. Bundala
& Závodný prove that it is enough to consider saturated networks.

We want a semantic characterization of saturation that is optimal.

Saturation (better)

A comparator network C is redundant if there exists a network C ′

obtained from C by removing a comparator such that
outputs(C ′) = outputs(C ).
A network C is saturated if it is non-redundant and every network
C ′ obtained by adding a comparator to the last layer of C satisfies
outputs(C ′) 6⊆ outputs(C ).
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Saturation, revisited [II]

Saturation theorem

Let C be a two-layer network. Then C is saturated iff C contains
none of the following two-layer patterns.

This is easily encoded in words.
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Saturation, revisited [II]

Saturation theorem

Let C be a two-layer network. Then C is saturated iff C contains
none of the following two-layer patterns.

This is easily encoded in words.

Word ::= Head | Stick | Cycle Stick ::= 12 | eStick | oStick

Head ::= 0 | eHead | oHead oStick ::= 12(12 + 21)+21

eHead ::= 0(12 + 21)∗12 eStick ::= 21(12 + 21)+12

oHead ::= 0(12 + 21)∗21 Cycle ::= 12(12 + 21)∗(1 + 2)
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Saturation, revisited [III]

Multi-sets of words corresponding to saturated nets do not contain
eWords and oWords.

We can again generate all saturated networks very efficiently for n
up to 40.

A similar technique eliminates nets that are (equivalent to)
reflections of others.

This is more expensive because the test for cycles takes time
proportional to the number of wires. However, the smallest
asymmetric cycle has 12 wires, so for practical purposes this is not
a problem.
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Some numerology

n 5 6 7 8 9 10 11 12 13

|Gn| 26 76 232 764 2,620 9,496 35,696 140,152 568,504
|Sn| 10 28 70 230 676 2,456 7,916 31,374 109,856

|R(Gn)| 16 20 52 61 165 152 482 414 1,378
|R(Sn)| 6 6 14 15 37 27 88 70 212
|Rn| 4 5 8 12 22 21 28 50 117

n 14 15 16 17 18

|Gn| 2,390,480 10,349,536 46,206,736 211,799,312 997,313,824
|Sn| 467,716 1,759,422 7,968,204 31,922,840 152,664,200

|R(Gn)| 1,024 3,780 2,627 10,187 6,422
|R(Sn)| 136 494 323 1,149 651
|Rn| 94 262 211 609 411

n 19 20 25 30 35 40

|R(Sn)| 2,632 1,478 30,312 64,168 1,604,790 2,792,966
|Rn| 1,367 894 15,469 34,486 806,710 1,429,836
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Results

Efficient generation of two-layer prefixes for comparator
networks

Representation can capture different important semantic
properties

Identified relevant sets of networks for open cases

Bottleneck is now processing each relevant network
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