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the optimization problems

the optimal size
problem

what is the minimal number of comparators on a sorting
network on n channels (sn)?

the optimal
depth problem

what is the minimal number of layers on a sorting
network on n channels (tn)?

our
contribution
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however. . . techniques not directly applicable to the size problem
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36 possibilities for each comparator
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comparator networks

comparator
network

a comparator network C on n channels is a sequence of
comparators (i , j) with 1 ≤ i < j ≤ n

output C (~x) denotes the output of C on ~x = x1 . . . xn

binary outputs the set of binary outputs of C is
outputs(C ) = {C (~x) | x ∈ {0, 1}n}

sorting network a comparator network C is a sorting network if C (~x) is
sorted for every input ~x

0–1 lemma
(knuth 1973)

C is a sorting network on n channels iff C sorts all
inputs in {0, 1}n
“C is a sorting network on n channels” is co-NP
(complete)
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sat encoding

Network = 〈c(I1, J1), . . . , c(Ik , Jk)〉

validn,k(Network) =
k∧

i=1

new int(Ii , 1, n)
∧ new int(Ji , 1, n)
∧ int lt(Ii , Ji )



sat encoding

Network = 〈c(I1, J1), . . . , c(Ik , Jk)〉

validn,k(Network)



sat encoding

Network = 〈c(I1, J1), . . . , c(Ik , Jk)〉

validn,k(Network)

ϕI,J(~x , ~y) =
∧

1≤i<j≤n

int eq(I,i) ∧ int eq(J,j)
→ ((yi ↔ xi ∧ xj) ∧ (yj ↔ xi ∨ xj))

ψI,J(~x , ~y) =
n∧

i=1

¬int eq(I,i) ∧ ¬int eq(J,i)
→ (yi ↔ xi )



sat encoding

Network = 〈c(I1, J1), . . . , c(Ik , Jk)〉

validn,k(Network)

ϕI,J(~x , ~y) =
∧

1≤i<j≤n

int eq(I,i) ∧ int eq(J,j)
→ ((yi ↔ xi ∧ xj) ∧ (yj ↔ xi ∨ xj))

ψI,J(~x , ~y) =
n∧

i=1

¬int eq(I,i) ∧ ¬int eq(J,i)
→ (yi ↔ xi )

sortsn,k(Network, ~b) =
k∧

i=1

ϕIi ,Ji (~xi−1, xi )
∧ψIi ,Ji (~xi−1, ~xi )

~x0 = ~b, ~xk = sort(~b)



sat encoding

Network = 〈c(I1, J1), . . . , c(Ik , Jk)〉

validn,k(Network) sortsn,k(Network, ~b)



sat encoding

Network = 〈c(I1, J1), . . . , c(Ik , Jk)〉

validn,k(Network) sortsn,k(Network, ~b)

sortern,k(Network) = validn,k(Network)

∧
∧

~b∈{0,1}n
sortsn,k(Network, ~b)



sat encoding

Network = 〈c(I1, J1), . . . , c(Ik , Jk)〉

validn,k(Network) sortsn,k(Network, ~b)

sortern,k(Network) = validn,k(Network)

∧
∧

~b∈{0,1}n
sortsn,k(Network, ~b)

this is compiled with the bee constraint compiler into a
cnf formula Ψ(n, k)

theorem Ψ(n, k) is satisfiable iff there is a sorting network on n
channels with k comparators



practical evaluation

optimal sorting networks (sat)

n k bee #clauses #vars sat

4 5 0.18 1916 486 0.01
5 9 1.03 10159 2550 0.03
6 12 4.55 35035 8433 2.45
7 16 21.68 114579 26803 16.70
8 19 82.93 321445 73331 ∞
9 25 452.55 977559 219950 ∞

smaller networks (unsat)

n k bee #clauses #vars sat

4 4 0.15 1480 356 0.01
5 8 0.90 8963 2221 1.27
6 11 3.99 32007 7657 242.02
7 15 19.04 107227 25000 ∞
8 18 73.34 304145 69221 ∞
9 24 406.67 937773 210715 ∞

(times in seconds, timeout = 1 week)



divide and conquer

main idea divide the “big” sat problem into smaller problems

consider all possible choices for the first ` comparators in

Network = 〈c(I1, J1), . . . , c(Ik , Jk)〉

find “minimal” set F of choices for I1, J1,. . . , I`, J` such
that

Ψn,k is satisfiable iff
∨
f ∈F

Ψn,k,f is satisfiable

where f = 〈I1, J1, . . . , I`, J`〉

reduce the size of F using symmetry-breaking techniques
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breaking symmetry i/ii

output lemma
(parberry 1991)

C and C ′ are comparator networks

outputs(C ) ⊆ outputs(C ′)

if C ′;N is a sorting network, then so is C ;N

{0, 1}n C // X⊆

{0, 1}n C ′ // X ′
N // S
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Závodný 2013)

C and C ′ comparator networks of depth 2
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C ′ can be extended to a sorting network

then C can also be extended to a sorting network of
depth 2

subsumption C � C ′ when
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Závodný 2013)

C and C ′ comparator networks of depth 2

π(outputs(C )) ⊆ outputs(C ′) for some permutation π

C ′ can be extended to a sorting network

then C can also be extended to a sorting network of
depth 2

{0, 1}n C // X

π
��

π−1(N) // π−1(S)

{0, 1}n C ′ // X ′
N // S

subsumption C � C ′ when

π(outputs(C )) ⊆ outputs(C ′)

for some permutation π



breaking symmetry ii/ii

permuted
output lemma
(generalized)

C and C ′ comparator networks of equal size

π(outputs(C )) ⊆ outputs(C ′) for some permutation π

C ′ can be extended to a sorting network

then C can also be extended to a sorting network of the
same size

{0, 1}n C // X

π
��

π−1(N) // π−1(S)

{0, 1}n C ′ // X ′
N // S

subsumption C � C ′ when

π(outputs(C )) ⊆ outputs(C ′)

for some permutation π



breaking symmetry ii/ii

permuted
output lemma
(generalized)

C and C ′ comparator networks of equal size

π(outputs(C )) ⊆ outputs(C ′) for some permutation π

C ′ can be extended to a sorting network

then C can also be extended to a sorting network of the
same size

subsumption C � C ′ when

π(outputs(C )) ⊆ outputs(C ′)

for some permutation π



the generate-and-prune approach

init set Rn
0 = {∅} and k = 0

repeat until k > 1 and |Rn
k | = 1

generate construct Nn
k+1 by extending each net in

Rn
k by one comparator in all possible ways

prune construct Rn
k+1 from Nn

k+1 by keeping only
one element of each minimal equivalence
class w.r.t. the transitive closure of �

step increase k

termination
condition

if C is a sorting network on n channels of size k , then
|Rn

k | = 1
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optimizations

only generate networks when the extra comparator does
something

prove and implement criteria for when subsumption will
fail

restrict the search space of possible permutations

optimize data structures

parallelize to 288 nodes



some numerology

n sn largest |Nn
k | largest |Rn

k | execution time

3 3 2 2 ∼0
4 5 12 4 ∼0
5 9 65 11 ∼0
6 12 380 53 2 sec
7 16 7,438 678 2 min
8 19 253,243 16,095 6 hours
9 25 18,420,674 914,444 16 years

parallel runtime for n = 9: 3 weeks

the hard part going “over the peak” consumes most execution time
0 12 14 16
•• • • • • • •
11 13 15 25
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collaboration is the key

find “minimal” set F of choices for I1, J1,. . . , I`, J` such
that

Ψn,k is satisfiable iff
∨
f ∈F

Ψn,k,f is satisfiable

where f = 〈I1, J1, . . . , I`, J`〉

taking F = R9
11 gives 188,730 independent problems

that can be solved in parallel – which is much faster
than letting the original program terminate

different values of k give different total running times
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results & future work

exact values of s9 and s10

technique may be adapted to settle higher values which
are still unknown

algorithms may be useful for finding
smaller-than-currently-known networks

further theoretical results may help proving optimality of
best known upper bounds
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