
twenty-five comparators is optimal
when sorting nine inputs
(and twenty-nine for ten)

lúıs cruz-filipe1 michael codish2

michael frank2 peter schneider-kamp1

1department of mathematics and computer science
university of southern denmark

2department of computer science
ben-gurion university of the negev, israel

ictai 2014
november 10th, 2014

outline

sorting
networks in a

nutshell

encoding the
size problem in

sat

conclusions &
future work

a sorting network

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

1

4

7

9

2

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

1

4

7

9

2

1

7

4

9

2

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

1

4

7

9

2

1

7

4

9

2

1

7

4

9

2

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

1

4

7

9

2

1

7

4

9

2

1

7

4

9

2

1

9

4

7

2

9

1

4

7

2

9

1

7

4

2

9

4

7

1

2

9

7

4

1

2

9

7

4

2

1

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

1

4

7

9

2

1

7

4

9

2

1

7

4

9

2

1

9

4

7

2

9

1

4

7

2

9

1

7

4

2

9

4

7

1

2

9

7

4

1

2

9

7

4

2

1

size this net has 5 channels and 9 comparators

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

1

4

7

9

2

1

7

4

9

2

1

7

4

9

2

1

9

4

7

2

9

1

4

7

2

9

1

7

4

2

9

4

7

1

2

9

7

4

1

2

9

7

4

2

1

size this net has 5 channels and 9 comparators

some of the comparisons may be performed in parallel

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

1

7

4

9

2

1

9

4

7

2

9

1

7

4

2

9

4

7

1

2

9

7

4

2

1

size this net has 5 channels and 9 comparators

some of the comparisons may be performed in parallel

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

1

7

4

9

2

1

9

4

7

2

9

1

7

4

2

9

4

7

1

2

9

7

4

2

1

size this net has 5 channels and 9 comparators

some of the comparisons may be performed in parallel

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

1

7

4

9

2

1

9

4

7

2

9

1

7

4

2

9

4

7

1

2

9

7

4

2

1

size this net has 5 channels and 9 comparators

depth this net has 5 layers

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

1

7

4

9

2

1

9

4

7

2

9

1

7

4

2

9

4

7

1

2

9

7

4

2

1

size this net has 5 channels and 9 comparators

depth this net has 5 layers

more info see d.e. knuth, the art of computer programming, vol. 3

the optimization problems

the optimal size
problem

what is the minimal number of comparators on a sorting
network on n channels (sn)?

the optimal
depth problem

what is the minimal number of layers on a sorting
network on n channels (tn)?

n 1 2 3 4 5 6 7 8 9 10

sn 0 1 3 5 9 12 16

tn 0 1 3 3 5 5 6

n 11 12 13 14 15 16

sn
35 39 45 51 56 60

tn

the optimization problems

the optimal size
problem

what is the minimal number of comparators on a sorting
network on n channels (sn)?

the optimal
depth problem

what is the minimal number of layers on a sorting
network on n channels (tn)?

knuth 1973

n 1 2 3 4 5 6 7 8 9 10

sn 0 1 3 5 9 12 16 19
25 29
23 27

tn 0 1 3 3 5 5 6 6
7 7
6 6

n 11 12 13 14 15 16

sn
35 39 45 51 56 60
31 35 39 43 47 51

tn
8 8 9 9 9 9
6 6 6 6 6 6

the optimization problems

the optimal size
problem

what is the minimal number of comparators on a sorting
network on n channels (sn)?

the optimal
depth problem

what is the minimal number of layers on a sorting
network on n channels (tn)?

parberry 1991

n 1 2 3 4 5 6 7 8 9 10

sn 0 1 3 5 9 12 16 19
25 29
23 27

tn 0 1 3 3 5 5 6 6 7 7

n 11 12 13 14 15 16

sn
35 39 45 51 56 60
31 35 39 43 47 51

tn
8 8 9 9 9 9
7 7 7 7 7 7

the optimization problems

the optimal size
problem

what is the minimal number of comparators on a sorting
network on n channels (sn)?

the optimal
depth problem

what is the minimal number of layers on a sorting
network on n channels (tn)?

bundala &
závodný 2013

n 1 2 3 4 5 6 7 8 9 10

sn 0 1 3 5 9 12 16 19
25 29
23 27

tn 0 1 3 3 5 5 6 6 7 7

n 11 12 13 14 15 16

sn
35 39 45 51 56 60
31 35 39 43 47 51

tn 8 8 9 9 9 9

the optimization problems

the optimal size
problem

what is the minimal number of comparators on a sorting
network on n channels (sn)?

the optimal
depth problem

what is the minimal number of layers on a sorting
network on n channels (tn)?

our
contribution

n 1 2 3 4 5 6 7 8 9 10

sn 0 1 3 5 9 12 16 19 25 29

tn 0 1 3 3 5 5 6 6 7 7

n 11 12 13 14 15 16

sn
35 39 45 51 56 60
33 37 41 45 49 53

tn 8 8 9 9 9 9

an exponential explosion

parberry 1991

exploration of symmetries fixed first layer

exhaustive search (200 hours of computation)

bundala &
závodný 2013

reduced set of two-layer prefixes

intensive sat-solving

however. . . techniques not directly applicable to the size problem

9 channels
(depth)

2620 possibilities for each layer
 26206 ≈ 3.2× 1020 6-layer networks

9 channels
(size)

36 possibilities for each comparator
 3624 ≈ 2.2× 1037 24-comparator networks

an exponential explosion

parberry 1991

exploration of symmetries fixed first layer

exhaustive search (200 hours of computation)

bundala &
závodný 2013

reduced set of two-layer prefixes

intensive sat-solving

however. . . techniques not directly applicable to the size problem

9 channels
(depth)

2620 possibilities for each layer
 26206 ≈ 3.2× 1020 6-layer networks

9 channels
(size)

36 possibilities for each comparator
 3624 ≈ 2.2× 1037 24-comparator networks

an exponential explosion

parberry 1991

exploration of symmetries fixed first layer

exhaustive search (200 hours of computation)

bundala &
závodný 2013

reduced set of two-layer prefixes

intensive sat-solving

however. . . techniques not directly applicable to the size problem

9 channels
(depth)

2620 possibilities for each layer
 26206 ≈ 3.2× 1020 6-layer networks

9 channels
(size)

36 possibilities for each comparator
 3624 ≈ 2.2× 1037 24-comparator networks

an exponential explosion

parberry 1991

exploration of symmetries fixed first layer

exhaustive search (200 hours of computation)

bundala &
závodný 2013

reduced set of two-layer prefixes

intensive sat-solving

however. . . techniques not directly applicable to the size problem

9 channels
(depth)

2620 possibilities for each layer
 26206 ≈ 3.2× 1020 6-layer networks

9 channels
(size)

36 possibilities for each comparator
 3624 ≈ 2.2× 1037 24-comparator networks

outline

sorting
networks in a

nutshell

encoding the
size problem in

sat

conclusions &
future work

comparator networks

comparator
network

a comparator network C on n channels is a sequence of
comparators (i , j) with 1 ≤ i < j ≤ n

output C (~x) denotes the output of C on ~x = x1 . . . xn

binary outputs the set of binary outputs of C is
outputs(C) = {C (~x) | x ∈ {0, 1}n}

sorting network a comparator network C is a sorting network if C (~x) is
sorted for every input ~x

0–1 lemma
(knuth 1973)

C is a sorting network on n channels iff C sorts all
inputs in {0, 1}n
“C is a sorting network on n channels” is co-NP
(complete)

comparator networks

comparator
network

a comparator network C on n channels is a sequence of
comparators (i , j) with 1 ≤ i < j ≤ n

output C (~x) denotes the output of C on ~x = x1 . . . xn

binary outputs the set of binary outputs of C is
outputs(C) = {C (~x) | x ∈ {0, 1}n}

sorting network a comparator network C is a sorting network if C (~x) is
sorted for every input ~x

0–1 lemma
(knuth 1973)

C is a sorting network on n channels iff C sorts all
inputs in {0, 1}n

“C is a sorting network on n channels” is co-NP
(complete)

comparator networks

comparator
network

a comparator network C on n channels is a sequence of
comparators (i , j) with 1 ≤ i < j ≤ n

output C (~x) denotes the output of C on ~x = x1 . . . xn

binary outputs the set of binary outputs of C is
outputs(C) = {C (~x) | x ∈ {0, 1}n}

sorting network a comparator network C is a sorting network if C (~x) is
sorted for every input ~x

0–1 lemma
(knuth 1973)

C is a sorting network on n channels iff C sorts all
inputs in {0, 1}n
“C is a sorting network on n channels” is co-NP
(complete)

sat encoding

Network = 〈c(I1, J1), . . . , c(Ik , Jk)〉

validn,k(Network) =
k∧

i=1

new int(Ii , 1, n)
∧ new int(Ji , 1, n)
∧ int lt(Ii , Ji)

sat encoding

Network = 〈c(I1, J1), . . . , c(Ik , Jk)〉

validn,k(Network)

sat encoding

Network = 〈c(I1, J1), . . . , c(Ik , Jk)〉

validn,k(Network)

ϕI,J(~x , ~y) =
∧

1≤i<j≤n

int eq(I,i) ∧ int eq(J,j)
→ ((yi ↔ xi ∧ xj) ∧ (yj ↔ xi ∨ xj))

ψI,J(~x , ~y) =
n∧

i=1

¬int eq(I,i) ∧ ¬int eq(J,i)
→ (yi ↔ xi)

sat encoding

Network = 〈c(I1, J1), . . . , c(Ik , Jk)〉

validn,k(Network)

ϕI,J(~x , ~y) =
∧

1≤i<j≤n

int eq(I,i) ∧ int eq(J,j)
→ ((yi ↔ xi ∧ xj) ∧ (yj ↔ xi ∨ xj))

ψI,J(~x , ~y) =
n∧

i=1

¬int eq(I,i) ∧ ¬int eq(J,i)
→ (yi ↔ xi)

sortsn,k(Network, ~b) =
k∧

i=1

ϕIi ,Ji (~xi−1, xi)
∧ψIi ,Ji (~xi−1, ~xi)

~x0 = ~b, ~xk = sort(~b)

sat encoding

Network = 〈c(I1, J1), . . . , c(Ik , Jk)〉

validn,k(Network) sortsn,k(Network, ~b)

sat encoding

Network = 〈c(I1, J1), . . . , c(Ik , Jk)〉

validn,k(Network) sortsn,k(Network, ~b)

sortern,k(Network) = validn,k(Network)

∧
∧

~b∈{0,1}n
sortsn,k(Network, ~b)

sat encoding

Network = 〈c(I1, J1), . . . , c(Ik , Jk)〉

validn,k(Network) sortsn,k(Network, ~b)

sortern,k(Network) = validn,k(Network)

∧
∧

~b∈{0,1}n
sortsn,k(Network, ~b)

this is compiled with the bee constraint compiler into a
cnf formula Ψ(n, k)

theorem Ψ(n, k) is satisfiable iff there is a sorting network on n
channels with k comparators

practical evaluation

optimal sorting networks (sat)

n k bee #clauses #vars sat

4 5 0.18 1916 486 0.01
5 9 1.03 10159 2550 0.03
6 12 4.55 35035 8433 2.45
7 16 21.68 114579 26803 16.70
8 19 82.93 321445 73331 ∞
9 25 452.55 977559 219950 ∞

smaller networks (unsat)

n k bee #clauses #vars sat

4 4 0.15 1480 356 0.01
5 8 0.90 8963 2221 1.27
6 11 3.99 32007 7657 242.02
7 15 19.04 107227 25000 ∞
8 18 73.34 304145 69221 ∞
9 24 406.67 937773 210715 ∞

(times in seconds, timeout = 1 week)

divide and conquer

main idea divide the “big” sat problem into smaller problems

consider all possible choices for the first ` comparators in

Network = 〈c(I1, J1), . . . , c(Ik , Jk)〉

find “minimal” set F of choices for I1, J1,. . . , I`, J` such
that

Ψn,k is satisfiable iff
∨
f ∈F

Ψn,k,f is satisfiable

where f = 〈I1, J1, . . . , I`, J`〉

reduce the size of F using symmetry-breaking techniques

divide and conquer

main idea divide the “big” sat problem into smaller problems

consider all possible choices for the first ` comparators in

Network = 〈c(I1, J1), . . . , c(Ik , Jk)〉

find “minimal” set F of choices for I1, J1,. . . , I`, J` such
that

Ψn,k is satisfiable iff
∨
f ∈F

Ψn,k,f is satisfiable

where f = 〈I1, J1, . . . , I`, J`〉

reduce the size of F using symmetry-breaking techniques

divide and conquer

main idea divide the “big” sat problem into smaller problems

consider all possible choices for the first ` comparators in

Network = 〈c(I1, J1), . . . , c(Ik , Jk)〉

find “minimal” set F of choices for I1, J1,. . . , I`, J` such
that

Ψn,k is satisfiable iff
∨
f ∈F

Ψn,k,f is satisfiable

where f = 〈I1, J1, . . . , I`, J`〉

reduce the size of F using symmetry-breaking techniques

divide and conquer

main idea divide the “big” sat problem into smaller problems

consider all possible choices for the first ` comparators in

Network = 〈c(I1, J1), . . . , c(Ik , Jk)〉

find “minimal” set F of choices for I1, J1,. . . , I`, J` such
that

Ψn,k is satisfiable iff
∨
f ∈F

Ψn,k,f is satisfiable

where f = 〈I1, J1, . . . , I`, J`〉

reduce the size of F using symmetry-breaking techniques

breaking symmetry i/ii

output lemma
(parberry 1991)

C and C ′ are comparator networks

outputs(C) ⊆ outputs(C ′)

if C ′;N is a sorting network, then so is C ;N

{0, 1}n C // X⊆

{0, 1}n C ′ // X ′
N // S

breaking symmetry i/ii

output lemma
(parberry 1991)

C and C ′ are comparator networks

outputs(C) ⊆ outputs(C ′)

if C ′;N is a sorting network, then so is C ;N

{0, 1}n C // X⊆

{0, 1}n C ′ // X ′
N // S

breaking symmetry i/ii

output lemma
(parberry 1991)

C and C ′ are comparator networks

outputs(C) ⊆ outputs(C ′)

if C ′;N is a sorting network, then so is C ;N

{0, 1}n C // X
N // S⊆

{0, 1}n C ′ // X ′
N // S

breaking symmetry ii/ii

permuted
output lemma

(bundala &
Závodný 2013)

C and C ′ comparator networks of depth 2

π(outputs(C)) ⊆ outputs(C ′) for some permutation π

C ′ can be extended to a sorting network

then C can also be extended to a sorting network of
depth 2

subsumption C � C ′ when

π(outputs(C)) ⊆ outputs(C ′)

for some permutation π

breaking symmetry ii/ii

permuted
output lemma

(bundala &
Závodný 2013)

C and C ′ comparator networks of depth 2

π(outputs(C)) ⊆ outputs(C ′) for some permutation π

C ′ can be extended to a sorting network

then C can also be extended to a sorting network of
depth 2

{0, 1}n C // X

π
��

π−1(S)

{0, 1}n C ′ // X ′
N // S

subsumption C � C ′ when

π(outputs(C)) ⊆ outputs(C ′)

for some permutation π

breaking symmetry ii/ii

permuted
output lemma

(bundala &
Závodný 2013)

C and C ′ comparator networks of depth 2

π(outputs(C)) ⊆ outputs(C ′) for some permutation π

C ′ can be extended to a sorting network

then C can also be extended to a sorting network of
depth 2

{0, 1}n C // X

π
��

π−1(N) // π−1(S)

{0, 1}n C ′ // X ′
N // S

subsumption C � C ′ when

π(outputs(C)) ⊆ outputs(C ′)

for some permutation π

breaking symmetry ii/ii

permuted
output lemma

(bundala &
Závodný 2013)

C and C ′ comparator networks of depth 2

π(outputs(C)) ⊆ outputs(C ′) for some permutation π

C ′ can be extended to a sorting network

then C can also be extended to a sorting network of
depth 2

{0, 1}n C // X

π
��

π−1(N) // π−1(S)

{0, 1}n C ′ // X ′
N // S

subsumption C � C ′ when

π(outputs(C)) ⊆ outputs(C ′)

for some permutation π

breaking symmetry ii/ii

permuted
output lemma
(generalized)

C and C ′ comparator networks of equal size

π(outputs(C)) ⊆ outputs(C ′) for some permutation π

C ′ can be extended to a sorting network

then C can also be extended to a sorting network of the
same size

{0, 1}n C // X

π
��

π−1(N) // π−1(S)

{0, 1}n C ′ // X ′
N // S

subsumption C � C ′ when

π(outputs(C)) ⊆ outputs(C ′)

for some permutation π

breaking symmetry ii/ii

permuted
output lemma
(generalized)

C and C ′ comparator networks of equal size

π(outputs(C)) ⊆ outputs(C ′) for some permutation π

C ′ can be extended to a sorting network

then C can also be extended to a sorting network of the
same size

subsumption C � C ′ when

π(outputs(C)) ⊆ outputs(C ′)

for some permutation π

the generate-and-prune approach

init set Rn
0 = {∅} and k = 0

repeat until k > 1 and |Rn
k | = 1

generate construct Nn
k+1 by extending each net in

Rn
k by one comparator in all possible ways

prune construct Rn
k+1 from Nn

k+1 by keeping only
one element of each minimal equivalence
class w.r.t. the transitive closure of �

step increase k

termination
condition

if C is a sorting network on n channels of size k , then
|Rn

k | = 1

the generate-and-prune approach

init set Rn
0 = {∅} and k = 0

repeat until k > 1 and |Rn
k | = 1

generate construct Nn
k+1 by extending each net in

Rn
k by one comparator in all possible ways

prune construct Rn
k+1 from Nn

k+1 by keeping only
one element of each minimal equivalence
class w.r.t. the transitive closure of �

step increase k

termination
condition

if C is a sorting network on n channels of size k , then
|Rn

k | = 1

optimizations

only generate networks when the extra comparator does
something

prove and implement criteria for when subsumption will
fail

restrict the search space of possible permutations

optimize data structures

parallelize to 288 nodes

some numerology

n sn largest |Nn
k | largest |Rn

k | execution time

3 3 2 2 ∼0
4 5 12 4 ∼0
5 9 65 11 ∼0
6 12 380 53 2 sec
7 16 7,438 678 2 min
8 19 253,243 16,095 6 hours
9 25 18,420,674 914,444 16 years

parallel runtime for n = 9: 3 weeks

the hard part going “over the peak” consumes most execution time
0 12 14 16
•• • • • • • •
11 13 15 25

some numerology

n sn largest |Nn
k | largest |Rn

k | execution time

3 3 2 2 ∼0
4 5 12 4 ∼0
5 9 65 11 ∼0
6 12 380 53 2 sec
7 16 7,438 678 2 min
8 19 253,243 16,095 6 hours
9 25 18,420,674 914,444 16 years

parallel runtime for n = 9: 3 weeks

the hard part going “over the peak” consumes most execution time
0 12 14 16
•• • • • • • •
11 13 15 25

some numerology

n sn largest |Nn
k | largest |Rn

k | execution time

3 3 2 2 ∼0
4 5 12 4 ∼0
5 9 65 11 ∼0
6 12 380 53 2 sec
7 16 7,438 678 2 min
8 19 253,243 16,095 6 hours
9 25 18,420,674 914,444 16 years

parallel runtime for n = 9: 3 weeks

the hard part going “over the peak” consumes most execution time
0 12 14 16
•• • • • • • •
11 13 15 25

collaboration is the key

find “minimal” set F of choices for I1, J1,. . . , I`, J` such
that

Ψn,k is satisfiable iff
∨
f ∈F

Ψn,k,f is satisfiable

where f = 〈I1, J1, . . . , I`, J`〉

taking F = R9
11 gives 188,730 independent problems

that can be solved in parallel – which is much faster
than letting the original program terminate

different values of k give different total running times

collaboration is the key

find “minimal” set F of choices for I1, J1,. . . , I`, J` such
that

Ψn,k is satisfiable iff
∨
f ∈F

Ψn,k,f is satisfiable

where f = 〈I1, J1, . . . , I`, J`〉

taking F = R9
11 gives 188,730 independent problems

that can be solved in parallel – which is much faster
than letting the original program terminate

different values of k give different total running times

collaboration is the key

find “minimal” set F of choices for I1, J1,. . . , I`, J` such
that

Ψn,k is satisfiable iff
∨
f ∈F

Ψn,k,f is satisfiable

where f = 〈I1, J1, . . . , I`, J`〉

taking F = R9
11 gives 188,730 independent problems

that can be solved in parallel – which is much faster
than letting the original program terminate

different values of k give different total running times

collaboration is the key

find “minimal” set F of choices for I1, J1,. . . , I`, J` such
that

Ψn,k is satisfiable iff
∨
f ∈F

Ψn,k,f is satisfiable

where f = 〈I1, J1, . . . , I`, J`〉

taking F = R9
11 gives 188,730 independent problems

that can be solved in parallel – which is much faster
than letting the original program terminate

different values of k give different total running times

outline

sorting
networks in a

nutshell

encoding the
size problem in

sat

conclusions &
future work

results & future work

exact values of s9 and s10

technique may be adapted to settle higher values which
are still unknown

algorithms may be useful for finding
smaller-than-currently-known networks

further theoretical results may help proving optimality of
best known upper bounds

thank you!

	sorting networks in a nutshell
	encoding the size problem in sat
	conclusions & future work

