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upper bounds obtained by concrete examples (1960s)

lower bounds obtained by mathematical arguments

huge number of nets

parberry 1991

exploration of symmetries  fixed first layer

exhaustive search (200 hours of computation)

bundala &
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reduced set of two-layer prefixes

intensive sat-solving

however. . . these techniques do not scale for t17

sat-solvers cannot handle two-layer prefixes

too many possibilities for third layer
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redundancy

redundant
comparator

let C ; (i , j);C ′ be a comparator network
the comparator (i , j) is redundant if xi ≤ xj for all
sequences x1 . . . xn ∈ outputs(C )

lemma if D and D ′ only differ in redundant comparators,
then D is a sorting network iff D ′ is a sorting network

goal restrict the search space by disallowing redundant
comparators

problem redundancy is a semantic property
 not easily encodable in sat
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lemma all comparators in the last layer of a non-redundant
sorting network are of the form (i , i + 1)

theorem there are fn+1 − 1 possible last layers in an n-channel
sorting network with no redundancy

fibonacci
sequence

f1 = f2 = 1, fn+2 = fn+1 + fn

 this reduces the number of possible last layers on 17
channels from 211,799,312 to just 2,583
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new idea we can reduce the search state even more by adding
redundant comparators!

llnf a sorting network is in last layer normal form if

its last layer only contains comparators between
adjacent channels

its last layer does not contain adjacent unused channels
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p0 = 1, p1 = p2 = 0, pn+3 = pn+1 + pn

 this further reduces the number of possible last layers
on 17 channels from 2,583 to only 86
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network belonging to different k-blocks, then the
comparator (i , j) in layer k is redundant

 

lemma (some stuff about “sliding” comparators)



co-saturation i/ii

generalization we can apply the same reasoning to previous layers

lemma if i < j are two channels unused in layer k of a sorting
network belonging to different k-blocks, then the
comparator (i , j) in layer k is redundant

 

lemma (some stuff about “sliding” comparators)



co-saturation i/ii

generalization we can apply the same reasoning to previous layers

lemma if i < j are two channels unused in layer k of a sorting
network belonging to different k-blocks, then the
comparator (i , j) in layer k is redundant

 

lemma (some stuff about “sliding” comparators)



co-saturation i/ii

generalization we can apply the same reasoning to previous layers

lemma if i < j are two channels unused in layer k of a sorting
network belonging to different k-blocks, then the
comparator (i , j) in layer k is redundant

 

lemma (some stuff about “sliding” comparators)



co-saturation i/ii

generalization we can apply the same reasoning to previous layers

lemma if i < j are two channels unused in layer k of a sorting
network belonging to different k-blocks, then the
comparator (i , j) in layer k is redundant

 

lemma (some stuff about “sliding” comparators)



co-saturation ii/ii

co-saturation we can characterize the networks resulting from applying
these transformations to the two last layers

co-saturation
theorem

if there is a sorting network on n channels, then there is
a co-saturated sorting network on n channels with the
same depth

 for n = 17, there are only 45,664 possibilities for the
last two layers of a co-saturated sorting network
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practical impact

the good news we can encode co-saturation in sat

unrestricted last two layers
slowest instance total

n #cases #clauses #vars time time

15 262 278,312 18,217 754.74 130,551.42
16 211 453,810 27,007 1,779.14 156,883.21

co-saturated last two layers
slowest instance total

n #cases #clauses #vars time time

15 262 335,823 25,209 148.35 19,029.26
16 211 314,921 22,901 300.07 24,604.53
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results

necessary conditions on last two layers
(was: sufficient conditions on first two layers)

co-saturation

6× speedup on optimal depth problem

similar techniques give 4× speedup on optimal size
problem

can find 10-layer sorting network on 17 channels in one
hour

key ingredient in computing exact value of t17



thank you!
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