
a formalized checker
for size-optimal sorting networks

lúıs cruz-filipe

(joint work with peter schneider-kamp)

department of mathematics and computer science
university of southern denmark

types meeting
may 20th, 2015

outline

sorting
networks in a

nutshell

sorting
networks, coq

style

generate-and-
prune

conclusions &
future work

a sorting network

more info see d.e. knuth, the art of computer programming, vol. 3

the optimal size
problem

what is the minimal number of comparators in a sorting
network on n channels (sn)?

a sorting network

1

4

7

2

9

more info see d.e. knuth, the art of computer programming, vol. 3

the optimal size
problem

what is the minimal number of comparators in a sorting
network on n channels (sn)?

a sorting network

1

4

7

2

9

1

4

7

9

2

more info see d.e. knuth, the art of computer programming, vol. 3

the optimal size
problem

what is the minimal number of comparators in a sorting
network on n channels (sn)?

a sorting network

1

4

7

2

9

1

4

7

9

2

1

7

4

9

2

more info see d.e. knuth, the art of computer programming, vol. 3

the optimal size
problem

what is the minimal number of comparators in a sorting
network on n channels (sn)?

a sorting network

1

4

7

2

9

1

4

7

9

2

1

7

4

9

2

1

7

4

9

2

more info see d.e. knuth, the art of computer programming, vol. 3

the optimal size
problem

what is the minimal number of comparators in a sorting
network on n channels (sn)?

a sorting network

1

4

7

2

9

1

4

7

9

2

1

7

4

9

2

1

7

4

9

2

1

9

4

7

2

9

1

4

7

2

9

1

7

4

2

9

4

7

1

2

9

7

4

1

2

9

7

4

2

1

more info see d.e. knuth, the art of computer programming, vol. 3

the optimal size
problem

what is the minimal number of comparators in a sorting
network on n channels (sn)?

a sorting network

1

4

7

2

9

1

4

7

9

2

1

7

4

9

2

1

7

4

9

2

1

9

4

7

2

9

1

4

7

2

9

1

7

4

2

9

4

7

1

2

9

7

4

1

2

9

7

4

2

1

size this net has 5 channels and 9 comparators

more info see d.e. knuth, the art of computer programming, vol. 3

the optimal size
problem

what is the minimal number of comparators in a sorting
network on n channels (sn)?

a sorting network

1

4

7

2

9

1

4

7

9

2

1

7

4

9

2

1

7

4

9

2

1

9

4

7

2

9

1

4

7

2

9

1

7

4

2

9

4

7

1

2

9

7

4

1

2

9

7

4

2

1

size this net has 5 channels and 9 comparators

more info see d.e. knuth, the art of computer programming, vol. 3

the optimal size
problem

what is the minimal number of comparators in a sorting
network on n channels (sn)?

a sorting network

1

4

7

2

9

1

4

7

9

2

1

7

4

9

2

1

7

4

9

2

1

9

4

7

2

9

1

4

7

2

9

1

7

4

2

9

4

7

1

2

9

7

4

1

2

9

7

4

2

1

size this net has 5 channels and 9 comparators

more info see d.e. knuth, the art of computer programming, vol. 3

the optimal size
problem

what is the minimal number of comparators in a sorting
network on n channels (sn)?

history

optimal size sn: minimal number of comparisons to sort n inputs

knuth 1973
n 1 2 3 4 5 6 7 8 9 10

sn 0 1 3 5 9 12 16 19
25 29
23 27

n 11 12 13 14 15 16 17

sn
35 39 45 51 56 60 73
31 35 39 43 47 51 56

values for n ≤ 4 from information theory

values for n = 5 and n = 7 by exhaustive case analysis

knuth sn ≥ sn−1 + 3 values for n = 6, 8

van voorhis sn ≥ sn−1 + lg(n) other lower bounds

history

optimal size sn: minimal number of comparisons to sort n inputs

yours truly
2014

n 1 2 3 4 5 6 7 8 9 10

sn 0 1 3 5 9 12 16 19 25 29

n 11 12 13 14 15 16 17

sn
35 39 45 51 56 60 73
33 37 41 45 49 53 58

generate-and-prune algorithm

intensive parallel computing

∼ 16 years of cpu time to compute s9

history

optimal size sn: minimal number of comparisons to sort n inputs

yours truly
2014

n 1 2 3 4 5 6 7 8 9 10

sn 0 1 3 5 9 12 16 19 25 29

n 11 12 13 14 15 16 17

sn
35 39 45 51 56 60 73
33 37 41 45 49 53 58

generate-and-prune algorithm

intensive parallel computing

∼ 16 years of cpu time to compute s9

but how do we know that these results are correct?

outline

sorting
networks in a

nutshell

sorting
networks, coq

style

generate-and-
prune

conclusions &
future work

pros and cons

the easy stuff

(very) constructive theory

everything is decidable

many proofs by exhaustive case analysis

elementary definitions

main challenges

all finite domains (channels, inputs, . . .)

reasoning about permutations (in proofs)

very informal proofs (“trivial”, “exercise”, “clearly”)

pros and cons

the easy stuff

(very) constructive theory

everything is decidable

many proofs by exhaustive case analysis

elementary definitions

main challenges

all finite domains (channels, inputs, . . .)

reasoning about permutations (in proofs)

very informal proofs (“trivial”, “exercise”, “clearly”)

comparator networks

comparator
network

sequence of comparators (i , j) with 1 ≤ i 6= j ≤ n
n is the number of channels

Definition comparator : Set := (prod nat nat).

Definition comp_net : Set := list comparator.

Definition comp_channels (n:nat) (c:comparator) :=

let (i,j) := c in (i<n) /\ (j<n) /\ (i<>j).

Definition channels (n:nat) (C:comp_net) :=

forall c:comparator, (In c C) -> (comp_channels n c).

Definition comp_standard (n:nat) (c:comparator) :=

let (i,j) := c in (i<n) /\ (j<n) /\ (i<j).

Definition standard (n:nat) (C:comp_net) :=

forall c:comparator, (In c C) -> (comp_standard n c).

comparator networks

comparator
network

sequence of comparators (i , j) with 1 ≤ i 6= j ≤ n
n is the number of channels

Definition comparator : Set := (prod nat nat).

Definition comp_net : Set := list comparator.

Definition comp_channels (n:nat) (c:comparator) :=

let (i,j) := c in (i<n) /\ (j<n) /\ (i<>j).

Definition channels (n:nat) (C:comp_net) :=

forall c:comparator, (In c C) -> (comp_channels n c).

intuition (1, 3), (2, 4) is a comparator network on 4 channels, but
also on 6 channels

Definition comp_standard (n:nat) (c:comparator) :=

let (i,j) := c in (i<n) /\ (j<n) /\ (i<j).

Definition standard (n:nat) (C:comp_net) :=

forall c:comparator, (In c C) -> (comp_standard n c).

comparator networks

comparator
network

sequence of comparators (i , j) with 1 ≤ i 6= j ≤ n
n is the number of channels

Definition comparator : Set := (prod nat nat).

Definition comp_net : Set := list comparator.

Definition comp_channels (n:nat) (c:comparator) :=

let (i,j) := c in (i<n) /\ (j<n) /\ (i<>j).

Definition channels (n:nat) (C:comp_net) :=

forall c:comparator, (In c C) -> (comp_channels n c).

standard i < j for all (i , j) ∈ C

Definition comp_standard (n:nat) (c:comparator) :=

let (i,j) := c in (i<n) /\ (j<n) /\ (i<j).

Definition standard (n:nat) (C:comp_net) :=

forall c:comparator, (In c C) -> (comp_standard n c).

sorting networks (i/iii)

0/1 lemma
(knuth 1973)

C is a sorting network on n channels iff C sorts all
inputs in {0, 1}n

Inductive bin_seq : nat -> Set :=

| empty : bin_seq 0

| zero : forall n:nat, bin_seq n -> bin_seq (S n)

| one : forall n:nat, bin_seq n -> bin_seq (S n).

Fixpoint get n (s:bin_seq n) (i:nat) : nat := ...

Fixpoint set n (s:bin_seq n) (i:nat) (x:nat)

: (bin_seq n) := ...

similar to Vector from the standard library

definition of sorted (property) and sort (operation)

induction principles, exhaustive enumeration

∼ 70 lemmas in total

sorting networks (i/iii)

0/1 lemma
(knuth 1973)

C is a sorting network on n channels iff C sorts all
inputs in {0, 1}n

Inductive bin_seq : nat -> Set :=

| empty : bin_seq 0

| zero : forall n:nat, bin_seq n -> bin_seq (S n)

| one : forall n:nat, bin_seq n -> bin_seq (S n).

Fixpoint get n (s:bin_seq n) (i:nat) : nat := ...

Fixpoint set n (s:bin_seq n) (i:nat) (x:nat)

: (bin_seq n) := ...

similar to Vector from the standard library

definition of sorted (property) and sort (operation)

induction principles, exhaustive enumeration

∼ 70 lemmas in total

sorting networks (ii/iii)

output C (~x) denotes the output of C on ~x = x1 . . . xn

Fixpoint apply (c:comparator) n (s:bin_seq n) : (bin_seq n) :=

let (i,j):=c in let x:=(get s i) in let y:=(get s j) in

match (le_lt_dec x y) with

| left _ => s

| right _ => set (set s j x) i y

end.

Fixpoint full_apply (C:comp_net) n (s:bin_seq n)

: (bin_seq n) :=

match C with

| nil => s

| cons c C’ => full_apply C’ _ (apply c s)

end.

sorting networks (ii/iii)

output C (~x) denotes the output of C on ~x = x1 . . . xn

Fixpoint apply (c:comparator) n (s:bin_seq n) : (bin_seq n).

Fixpoint full_apply (C:comp_net) n (s:bin_seq n) : (bin_seq n).

binary outputs outputs(C) = {C (~x) | x ∈ {0, 1}n}

Definition outputs (C:comp_net) (n:nat) : (list (bin_seq n))

:= (map (full_apply C (n:=n)) (all_bin_seqs n)).

sorting network C (~x) is sorted for every input ~x

Definition sort_net (n:nat) (C:comp_net) :=

(channels n C) /\

forall s:bin_seq n, sorted (full_apply C s).

Theorem SN_char : forall C n, channels n C ->

(forall s, In s (outputs C n) -> sorted s) ->

sort_net n C.

sorting networks (ii/iii)

output C (~x) denotes the output of C on ~x = x1 . . . xn

Fixpoint apply (c:comparator) n (s:bin_seq n) : (bin_seq n).

Fixpoint full_apply (C:comp_net) n (s:bin_seq n) : (bin_seq n).

binary outputs outputs(C) = {C (~x) | x ∈ {0, 1}n}

Definition outputs (C:comp_net) (n:nat) : (list (bin_seq n))

:= (map (full_apply C (n:=n)) (all_bin_seqs n)).

sorting network C (~x) is sorted for every input ~x

Definition sort_net (n:nat) (C:comp_net) :=

(channels n C) /\

forall s:bin_seq n, sorted (full_apply C s).

Theorem SN_char : forall C n, channels n C ->

(forall s, In s (outputs C n) -> sorted s) ->

sort_net n C.

sorting networks (iii/iii)

sanity check
Definition SN4 :=

(0[<]1 :: 2[<]3 :: 0[<]2 ::

1[<]3 :: 1[<]2 :: nil).

Theorem SN4_SN: sort_net 4 SN4.

the bad news does not scale for 9 channels

the good news “C is a sorting network” is decidable

Lemma SN_dec : forall n C, channels n C ->

{sort_net n C} + {~sort_net n C}.

program extraction haskell program (tests all inputs)

nearly best possible algorithm (known result)

short formalization (∼ 35 lemmas)

sorting networks (iii/iii)

sanity check
Definition SN4 :=

(0[<]1 :: 2[<]3 :: 0[<]2 ::

1[<]3 :: 1[<]2 :: nil).

Theorem SN4_SN: sort_net 4 SN4.

the bad news does not scale for 9 channels

the good news “C is a sorting network” is decidable

Lemma SN_dec : forall n C, channels n C ->

{sort_net n C} + {~sort_net n C}.

program extraction haskell program (tests all inputs)

nearly best possible algorithm (known result)

short formalization (∼ 35 lemmas)

sorting networks (iii/iii)

sanity check
Definition SN4 :=

(0[<]1 :: 2[<]3 :: 0[<]2 ::

1[<]3 :: 1[<]2 :: nil).

Theorem SN4_SN: sort_net 4 SN4.

the bad news does not scale for 9 channels

the good news “C is a sorting network” is decidable

Lemma SN_dec : forall n C, channels n C ->

{sort_net n C} + {~sort_net n C}.

program extraction haskell program (tests all inputs)

nearly best possible algorithm (known result)

short formalization (∼ 35 lemmas)

sorting networks (iii/iii)

sanity check
Definition SN4 :=

(0[<]1 :: 2[<]3 :: 0[<]2 ::

1[<]3 :: 1[<]2 :: nil).

Theorem SN4_SN: sort_net 4 SN4.

the bad news does not scale for 9 channels

the good news “C is a sorting network” is decidable

Lemma SN_dec : forall n C, channels n C ->

{sort_net n C} + {~sort_net n C}.

program extraction haskell program (tests all inputs)

nearly best possible algorithm (known result)

short formalization (∼ 35 lemmas)

the key result

output lemma
(parberry 1991)

if outputs(C) ⊆ outputs(C ′) and C ′;N is a sorting
network, then C ;N is a sorting network

permuted
output lemma

if π(outputs(C)) ⊆ outputs(C ′) for some permutation π
and C ′ extends to a sorting network, then C extends to
a sorting network

proof
{0, 1}n C // X

π
��

{0, 1}n C ′
// X ′

N // S

 how do we formalize this?

the key result

output lemma
(parberry 1991)

if outputs(C) ⊆ outputs(C ′) and C ′;N is a sorting
network, then C ;N is a sorting network

permuted
output lemma

if π(outputs(C)) ⊆ outputs(C ′) for some permutation π
and C ′ extends to a sorting network, then C extends to
a sorting network

proof
{0, 1}n C // X

π
��

{0, 1}n C ′
// X ′

N // S

 how do we formalize this?

the key result

output lemma
(parberry 1991)

if outputs(C) ⊆ outputs(C ′) and C ′;N is a sorting
network, then C ;N is a sorting network

permuted
output lemma

if π(outputs(C)) ⊆ outputs(C ′) for some permutation π
and C ′ extends to a sorting network, then C extends to
a sorting network

proof
{0, 1}n C // X

π
��

{0, 1}n C ′
// X ′

N // S

 how do we formalize this?

the key result

output lemma
(parberry 1991)

if outputs(C) ⊆ outputs(C ′) and C ′;N is a sorting
network, then C ;N is a sorting network

permuted
output lemma

if π(outputs(C)) ⊆ outputs(C ′) for some permutation π
and C ′ extends to a sorting network, then C extends to
a sorting network

proof
{0, 1}n C // X

π
��

π(N) // π(S)

{0, 1}n C ′
// X ′

N // S

 how do we formalize this?

the key result

output lemma
(parberry 1991)

if outputs(C) ⊆ outputs(C ′) and C ′;N is a sorting
network, then C ;N is a sorting network

permuted
output lemma

if π(outputs(C)) ⊆ outputs(C ′) for some permutation π
and C ′ extends to a sorting network, then C extends to
a sorting network

proof
{0, 1}n C // X

π
��

st(π(N)) // S

{0, 1}n C ′
// X ′

N // S

 how do we formalize this?

the key result

output lemma
(parberry 1991)

if outputs(C) ⊆ outputs(C ′) and C ′;N is a sorting
network, then C ;N is a sorting network

permuted
output lemma

if π(outputs(C)) ⊆ outputs(C ′) for some permutation π
and C ′ extends to a sorting network, then C extends to
a sorting network

proof
{0, 1}n C // X

π
��

st(π(N)) // S

{0, 1}n C ′
// X ′

N // S

 how do we formalize this?

standardization (i/ii)

standardization take the first non-standard comparator (i , j) and
interchange i and j in all subsequent positions; repeat
until network is standard

lemma if C is a sorting network, then so is st(C)

proof the elements of outputs(st(C)) are obtained by
permuting all elements of outputs(C) in the same way;
since st(C) does not change sorted inputs, this
permutation must be the identity

 in our case: need a (simple?) generalization

standardization (i/ii)

standardization take the first non-standard comparator (i , j) and
interchange i and j in all subsequent positions; repeat
until network is standard

lemma if C is a sorting network, then so is st(C)

proof the elements of outputs(st(C)) are obtained by
permuting all elements of outputs(C) in the same way;
since st(C) does not change sorted inputs, this
permutation must be the identity

 in our case: need a (simple?) generalization

standardization (i/ii)

standardization take the first non-standard comparator (i , j) and
interchange i and j in all subsequent positions; repeat
until network is standard

lemma if C is a sorting network, then so is st(C)

proof the elements of outputs(st(C)) are obtained by
permuting all elements of outputs(C) in the same way;
since st(C) does not change sorted inputs, this
permutation must be the identity

 in our case: need a (simple?) generalization

standardization (ii/ii)

standardization Function standardize (C:comp_net) {measure length C}

: comp_net := match C with

| nil => nil

| cons c C’ => let (x,y) := c in

match (le_lt_dec x y) with

| left _ => (x[<]y :: standardize C’)

| right _ => (y[<]x :: standardize (permute x y C’))

end

end.

not structurally decreasing

lots of implicit properties

lemma Theorem standardization_sort : forall C n,

sort_net n C -> sort_net n (standardize C).

standardization (ii/ii)

standardization Function standardize (C:comp_net) {measure length C}

: comp_net := match C with

| nil => nil

| cons c C’ => let (x,y) := c in

match (le_lt_dec x y) with

| left _ => (x[<]y :: standardize C’)

| right _ => (y[<]x :: standardize (permute x y C’))

end

end.

not structurally decreasing

lots of implicit properties

preserves size and number of channels
preserves standard prefix
result is standard
idempotent

lemma Theorem standardization_sort : forall C n,

sort_net n C -> sort_net n (standardize C).

standardization (ii/ii)

standardization Function standardize (C:comp_net) {measure length C}

: comp_net := match C with

| nil => nil

| cons c C’ => let (x,y) := c in

match (le_lt_dec x y) with

| left _ => (x[<]y :: standardize C’)

| right _ => (y[<]x :: standardize (permute x y C’))

end

end.

not structurally decreasing

lots of implicit properties

lemma Theorem standardization_sort : forall C n,

sort_net n C -> sort_net n (standardize C).

standardization (ii/ii)

standardization Function standardize (C:comp_net) {measure length C}

: comp_net := match C with

| nil => nil

| cons c C’ => let (x,y) := c in

match (le_lt_dec x y) with

| left _ => (x[<]y :: standardize C’)

| right _ => (y[<]x :: standardize (permute x y C’))

end

end.

not structurally decreasing

lots of implicit properties

lemma Theorem standardization_sort : forall C n,

sort_net n C -> sort_net n (standardize C).

 requires ∼ 60 lemmas about permutations

subsumption

definition C �π C ′ if π(outputs(C)) ⊆ outputs(C ′)
C � C ′ if C �π C ′ for some permutation π

 subsumption is reflexive and transitive

Variable n:nat.

Variables C C’:comp_net.

Variable P:permut.

Variable HP:permutation n P.

Definition subsumption :=

forall s:bin_seq n, In s (outputs C n) ->

In (apply_perm P s) (outputs C’ n).

Theorem BZ : standard n C -> subsumption ->

sort_net n (C’++N) ->

sort_net n (standardize (C ++ apply_perm_to_net P N)).

Lemma subsumption_dec : {subsumption} + {~subsumption}.

subsumption

definition C �π C ′ if π(outputs(C)) ⊆ outputs(C ′)
C � C ′ if C �π C ′ for some permutation π

Variable n:nat.

Variables C C’:comp_net.

Variable P:permut.

Variable HP:permutation n P.

Definition subsumption :=

forall s:bin_seq n, In s (outputs C n) ->

In (apply_perm P s) (outputs C’ n).

Theorem BZ : standard n C -> subsumption ->

sort_net n (C’++N) ->

sort_net n (standardize (C ++ apply_perm_to_net P N)).

Lemma subsumption_dec : {subsumption} + {~subsumption}.

outline

sorting
networks in a

nutshell

sorting
networks, coq

style

generate-and-
prune

conclusions &
future work

the algorithm

init set Rn
0 = {∅} and k = 0

repeat until k > 1 and |Rn
k | = 1

generate Nn
k+1 extend each net in Rn

k by one
comparator in all possible ways

prune to Rn
k+1 keep only one element from each

minimal equivalence class w.r.t. �T

step increase k

the algorithm

init set Rn
0 = {∅} and k = 0

repeat until k > 1 and |Rn
k | = 1

generate Nn
k+1 extend each net in Rn

k by one
comparator in all possible ways

prune to Rn
k+1 keep only one element from each

minimal equivalence class w.r.t. �T

step increase k

pruning

quadratic step

inner loop searches among all permutations
typically fails

record successful subsumptions

the algorithm

init set Rn
0 = {∅} and k = 0

repeat until k > 1 and |Rn
k | = 1

generate Nn
k+1 extend each net in Rn

k by one
comparator in all possible ways

prune to Rn
k+1 keep only one element from each

minimal equivalence class w.r.t. �T

step increase k

certified checker using recorded subsumptions as an oracle

replace pruning cycle by oracle calls

skeptic approach towards oracle

use program extraction

verifies all cases up to s8, requires ∼18 years for s9. . .

checker soundness

Definition Oracle := list (comp_net * comp_net * (list nat)).

Inductive Answer : Set :=

| yes : nat -> nat -> Answer

| no : forall n k:nat, forall R:list comp_net,

NoDup R ->

(forall C, In C R -> length C = k) ->

(forall C, In C R -> standard n C) -> Answer

| maybe : Answer.

Fixpoint Generate_and_Prune (m n:nat) (O:list Oracle) :

Answer.

Theorem GP_no : forall m n O R HR0 HR1 HR2,

Generate_and_Prune m n O = no m n R HR0 HR1 HR2 ->

forall C, sort_net m C -> length C > n.

Theorem GP_yes : forall m n O k,

Generate_and_Prune m n O = yes m k ->

(forall C, sort_net m C -> length C >= k) /\

exists C, sort_net m C /\ length C = k.

an offline oracle

typical approach

call oracle to solve difficult tasks

check result

oracle is online, waiting for the next problem

in our case

oracle is pre-computed (offline)

information from oracle guides algorithm

potential for optimizations

an offline oracle

typical approach

call oracle to solve difficult tasks

check result

oracle is online, waiting for the next problem

in our case

oracle is pre-computed (offline)

information from oracle guides algorithm

potential for optimizations

improving the pruning step

old algorithm while oracle has a next subsumption C �π C ′

1 check that C �π C ′

2 check that C ,C ′ are in the current set

3 remove C ′ from the current set

(laziness performs the last two steps together)

new algorithm while oracle has a next subsumption C �π C ′

1 check that C �π C ′

2 store C

3 remove C ′ from the current set

after: check that all stored networks are in the final set

improving the pruning step

old algorithm while oracle has a next subsumption C �π C ′

1 check that C �π C ′

2 check that C ,C ′ are in the current set

3 remove C ′ from the current set

(laziness performs the last two steps together)

new algorithm while oracle has a next subsumption C �π C ′

1 check that C �π C ′

2 store C

3 remove C ′ from the current set

after: check that all stored networks are in the final set

improving the pruning step

new algorithm while oracle has a next subsumption C �π C ′

1 check that C �π C ′

2 store C

3 remove C ′ from the current set

after: check that all stored networks are in the final set

requirement

cannot have subsumption chains, e.g. C1 � C2 � C3

pre-processing replace chains by endpoint subsumptions (e.g. C1 � C3)
computing adequate permutation

 don’t care how, they will be checked anyway!

improving the pruning step

new algorithm while oracle has a next subsumption C �π C ′

1 check that C �π C ′

2 store C

3 remove C ′ from the current set

after: check that all stored networks are in the final set

optimizations

provide C ′s in the order they were generated
(replaces quadratic step by linear)

replace lists by search trees (improves performance)

extract naturals to native integers
(unfortunately necessary, but clearly sound)

represent comparators as a single number
(reduces memory consumption)

philosophical considerations

the good news checker verifies s9 in around 6 days using “moderate”
resources

moderate not-so-new commonplace cpu, 64 gb ram

more good news (almost) no changes to the formalization

relatively quick changes (a few hours each)

mostly require proving that optimized version coincides
with original version

offline oracles a new methodology?

philosophical considerations

the good news checker verifies s9 in around 6 days using “moderate”
resources

more good news (almost) no changes to the formalization

relatively quick changes (a few hours each)

mostly require proving that optimized version coincides
with original version

offline oracles a new methodology?

philosophical considerations

the good news checker verifies s9 in around 6 days using “moderate”
resources

more good news (almost) no changes to the formalization

relatively quick changes (a few hours each)

mostly require proving that optimized version coincides
with original version

offline oracles a new methodology?

outline

sorting
networks in a

nutshell

sorting
networks, coq

style

generate-and-
prune

conclusions &
future work

conclusions & future work

results

formal verification of exact values of sn for n ≤ 9

new methodology (offline oracles)

able to deal with ∼ 27 gb of proof witnesses

clean separation between formalization (“mathematics”)
and optimization of checker (“computer science”)

next episodes

formal proof of van voorhis’ sn ≥ sn−1 + lg(n) to obtain
s10

other problems in sorting networks

application of this method to other search-intensive
proofs

thank you!

	sorting networks in a nutshell
	sorting networks, coq style
	generate-and-prune
	conclusions & future work

