a turing-complete choreography calculus

luis cruz-filipe
(joint work with fabrizio montesi)

department of mathematics and computer science
university of southern denmark

labmag seminar
july 21th, 2015



outline

the zoo of
communzication



process calculi
[
=

models of communicating systems

m-calculus and its variants
low-level modeling of communication
too technical for many purposes

many interesting fragments are undecidable



process calculi
[
=

choreographies
[
[

models of communicating systems

m-calculus and its variants
low-level modeling of communication
too technical for many purposes

many interesting fragments are undecidable

global view of the system
directed communication (from alice to bob)
deadlock-free by design

compilable to process calculi



models of communicating systems

process calculi  m-calculus and its variants
m low-level modeling of communication
m too technical for many purposes

m  many interesting fragments are undecidable

choreographies
m global view of the system
m directed communication (from alice to bob)
m deadlock-free by design

m compilable to process calculi

actor systems
E even more abstract

m avoid “implementation details” (channels, sessions)



computational expressiveness

~> trivially turing-complete
(arbitrary computation at each process)



computational expressiveness

trivially turing-complete

(arbitrary computation at each process)
communication

reduce local computation to a minimum
reduce system primitives to a minimum

how far can we go?



m-calculus

computational expressiveness

trivially turing-complete

(arbitrary computation at each process)
communication

reduce local computation to a minimum
reduce system primitives to a minimum

how far can we go?

direct encoding of A-calculus is unsatisfactory
counter-intuitive notion of computation

data and programs at the same level



our contribution

i/o-based notion of function implementation

computation by message-passing
reminiscent of memory models (e.g. urm)



our contribution

i/o-based notion of function implementation

computation by message-passing
reminiscent of memory models (e.g. urm)



our contribution

i/o-based notion of function implementation

computation by message-passing
reminiscent of memory models (e.g. urm)

computes A/

A TR



our contribution

i/o-based notion of function implementation
computation by message-passing

reminiscent of memory models (e.g. urm)

computes

A~

compiles
compiles =~

>
-
z



our contribution

i/o-based notion of function implementation
computation by message-passing

reminiscent of memory models (e.g. urm)

computes

A~

b

compiles
compiles

computes

_U

>
-
z



our contribution

i/o-based notion of function implementation

computation by message-passing
reminiscent of memory models (e.g. urm)

computes A/

A TR



our contribution

i/o-based notion of function implementation

computation by message-passing
reminiscent of memory models (e.g. urm)

computes A/ .

A~



our contribution

i/o-based notion of function implementation

computation by message-passing
reminiscent of memory models (e.g. urm)

computes C,

C’\/\/\/\/\/\/\/\/\/\)

computes /

A ST A



our contribution

i/o-based notion of function implementation

computation by message-passing
reminiscent of memory models (e.g. urm)

computes /

C~nrr~~~—~->C



our contribution

i/o-based notion of function implementation
computation by message-passing
reminiscent of memory models (e.g. urm)

computes
C e S A T N

compiles
- ( \)
compiles

o)
@]

Pc



our contribution

i/o-based notion of function implementation
computation by message-passing
reminiscent of memory models (e.g. urm)

computes
C e S A T N

Q

compiles
compiles

computes

o)
@]

Pc



our contribution

i/o-based notion of function implementation
computation by message-passing

reminiscent of memory models (e.g. urm)

C computes
NN N N AN
C®
&
S
@
@
R

Q

computes .
A o A

compiles

compiles

computes
c ~——|~~~~ P

av) compiles

compiles

computes

o)
>

Pas



our contribution

i/o-based notion of function implementation
computation by message-passing
reminiscent of memory models (e.g. urm)

computes
C I e A S S T e

Q

computes .
A o A

compiles

compiles
compiles

computes
~= P

e
N
2
. ;,6‘\\ <
S o<
&F
O NN NN NN

computes
Pas

compiles
(@]

o)
>



our contribution

i/o-based notion of function implementation
computation by message-passing
reminiscent of memory models (e.g. urm)

computes
C I e A S S T e

Q

computes .
A o A

compiles

compiles
compiles

computes
~= P

e
£
2
. ;,6‘\\ <
S o<
&F
O NN NN NN

computes
Pas

compiles
(@]

o)
>



our contribution

m i/o-based notion of function implementation
m computation by message-passing

m reminiscent of memory models (e.g. urm)

C computes C/
PN N NN AN T
&7 7
Ros &
N -
o Bty
o 7
: R P
. computes 7 =
A~~~ A 2
5
8 » °©
5 3
£ a
" 8 £
2 o computes P
a P NN
£ C c’/
S <
RS
> &
Y v\é@
computes



our contribution

focus of this talk:
m turing-completeness of actor choreographies

m the embedding into channel choreographies

computes /
O ETE o C
o || 7
X2 | -
oS - &
. N AN
RO R
B R
: @ «»
- . RS 4]
A computes A, =
A~
£
o
o

computes
~= P

~—memm
N
RO
< O
o o
&
R NN NN NN

computes
Pas

compiles
i
compiles

compiles
(@]

U
>



outline

communication
& computation



channel
choreographies

from channels to actors. . .

Cu= 0|nC|(vr)C
| if p.(e = €’) then Cy else C»
| def X(D) = Coin Cy | X(E)

n == p[Al.e = q[B].x: k
| p[A] = q[B] : K[/]
| P[A] — a[B] : k(K'[C])
] p;[\A/]startcﬁB/] s a(k)

| ::= infinite set of labels

e ;1= expressions over some language



from channels to actors. . .

channel C:= 0|n;C
choreographies |if p.(e = €/) then Cy else C»

| def X(D) = Coin Cy | X(E)

n == p[Al.e = q[B].x: k
| P[A] — q[B] : k[/]
| p[A] = a[B] : k(K'[C])

| ::= infinite set of labels

e ;1= expressions over some language

~+ fresh names are cool, but irrelevant



channel
choreographies

from channels to actors. . .

C:= 0|nC
| if p.(e = €’) then Cy else C»
| def X(D) = Coin Cy | X(E)

n == p[Al.e = q[B].x: k
| P[A] — q[B] : k[/]
| p[A] = a[B] : k(K'[C])

| ::= infinite set of labels

e ;1= expressions over some language



from channels to actors. . .

channel C:= 0|n;C
choreographies |if p.(e = €/) then Cy else C»

| def X(D) = Coin Cy | X(E)

n == p[Al.e = q[B].x: k
| P[A] — q[B] : k[/]

| ::= infinite set of labels

e ;1= expressions over some language

~~ role passing important in practice, but not needed



channel
choreographies

from channels to actors. . .

C:= 0|nC
| if p.(e = €’) then Cy else C»
| def X(D) = Coin Cy | X(E)

n == p[Al.e = q[B].x: k
| P[A] — q[B] : k[/]

| ::= infinite set of labels

e ;1= expressions over some language



from channels to actors. . .

channel C:= 0|n;C
choreographies |if p.(e = €/) then Cy else C»

| def X(D) = Coin Cy | X(E)

ni= pAhlle—=>qbBl.x:k
| plAl = alB] k()]

| ::= infinite set of labels

e ;1= expressions over some language

~ ...but now roles are irrelevant



channel
choreographies

from channels to actors. . .

C:= 0|nC
| if p.(e = €’) then Cy else C»
| def X(D) = Coin Cy | X(E)

ni= pe—qx:k
[p—a:k[l]
| ::= infinite set of labels

e ;1= expressions over some language



from channels to actors. . .

channel C:= 0|n;C
choreographies |if p.(e = €/) then Cy else C»

| def X(D) = Coin Cy | X(E)

ni= p.e—qx
lp—q K[
| ::= infinite set of labels
e ;1= expressions over some language

~ communication can take place over only one channel



channel
choreographies

from channels to actors. . .

C:= 0|nC
| if p.(e = €’) then Cy else C»
| def X(D) = Coin Cy | X(E)

ni= p.e—qx
| p— all]
| ::= infinite set of labels

e ;1= expressions over some language



actor
choreographies

from channels to actors. . .

A= 0|nA
| if p.(e = €’) then Aj else A,
| def X(D) = Ayin Ay | X(E)

ni= p.e—qx
| p—ql]
| ::= infinite set of labels

e ;1= expressions over some language



from channels to actors. . .

actor A== 0 | 7 A

choreographies | if p.(e = €') then Ay else A,

| def X =AyinA; | X
ni= p.e—qx

| p—ql]
| ::= infinite set of labels
e ;1= expressions over some language

~+  parameters suddenly do very little



actor
choreographies

from channels to actors. . .

A= 0|nA
| if p.(e = €’) then Aj else A,
| defX:AzinAl | X

ni= p.e—qx
| p—ql]
| ::= infinite set of labels

e ;1= expressions over some language



from channels to actors. . .

actor A= 0 ‘ n;, A
choreographies | if p.(e = €') then Ay else A,

|defX:A2inA1|X

ni= p.e—(q
| p—ql]
| =
e ::= expressions over some language

~+ only two labels, only one memory cell. ..



actor
choreographies

from channels to actors. . .

A= 0|nA
| if p.(e = €’) then Aj else A,
| defX:AzinAl | X

ni= p.e—q
| p—all]
[:=L|R

e ;1= expressions over some language



from channels to actors. . .

actor A= 0 ‘ n;, A
choreographies | if p.(e = €') then Ay else A,

|defX:A2inA1|X

ni= p.e—q
| p— all]

[:=L|R

e .=

~» ...and minimal set of expressions. ..



actor
choreographies

from channels to actors. . .

Az= 0]nA
| if then A; else A,
| defX:AzinAl | X

ni= p.e—q
| p— qll]

l:=L|R

ex=¢e|c|s-c

.. requiring a different conditional



from channels to actors. . .

actor A== 0 ‘ n;, A

choreographies | if (p.c = q.c) then Ay else Ay

|defX:A2inA1|X

ni= p.e—q
| p—all]
[:=L|R

ex=¢e|c|s-c



...and back again

actor A== 0 ‘ n;, A

choreographies | if (p.c = q.c) then Aj else Ay

|defX:A2inA1|X

ni= p.e—q
| p—all]
[:=L|R

ex=¢e|c|s-c



...and back again

actor A== 0 | 7 A

choreographies | if (plp].c = q]q].c) then Ay else Ay

|defX:A2inA1|X

n:= pple—q

[ plpl =4 /]
[:=L|R
ex=¢e|c|s-c

~ reintroduce roles and (one) channel



...and back again

actor A== 0 | 7 A
choreographies | if (p[p].c = qlq].c) then Ay else A,
| def X = AzinAl | X

n:= plpl.e = ald] : k
| plp] — ala] : &[]

[:=L|R

ex=¢e|c|s-c



...and back again

actor A= 0 ‘ n;, A
choreographies | if p[p].( ) then Ay else Ay
| def X = AzinAl | X

n:= plpl.e = ala] < : k
| plp] — ala] : &[]

~> one variable for content, another for testing



...and back again

actor A== 0 | 7 A
choreographies | alal-x — plpl-y : k:if p[p].(x = y) then Aq else Ay
| def X = AzinAl | X

n == plpl.e = ql[q].x: k
| plp] — ala] : &[]

[:=L|R

en=¢e|x|s-x



...and back again

actor A== 0 | 7 A
choreographies | alal-x — plpl-y : k:if p[p].(x = y) then Aq else Ay
| def X =AyinA; | X

n == plpl.e = ql[q].x: k
| plp] — ala] : &[]

[:=L|R

en=¢e|x|s-x

~»  extensively annotate recursive definitions (trivial)



...and back again

actor A= 0 ‘ n;, A
choreographies | alal-x — plpl-y : k:if p[p].(x = y) then Aq else Ay
| def X(D) = Ayin Ay | X(E)

n == plpl.e = ql[q].x: k
| plp] — ala] : &[]

[:=L|R

en=¢e|x|s-x



actor choreographies

actor A= 0]n; A|if(p.c = q.c)then Aj else Ay
choreographies | def X = Apin Ay | X
no=p.e—ql|p—q[l]
[:=L|R

ex=¢e|c]|s-c



actor choreographies

actor A= 0]n; A|if(p.c = q.c)then Aj else Ay
choreographies | def X = Asin A | X

no=p.e—ql|p—q[l]
l:=L|R

ex=¢e|c]|s-c

urm machine classical model of computation

m similar to physical memory

m  memory cells store natural numbers

B memory operations: zero, sUCcessor, copy
® jump-on-equal



actor choreographies

actor A= 0]n; A|if(p.c = q.c)then Aj else Ay
choreographies | def X = Asin A | X

nu=p.e—q|p—qll
l:=L|R

ex=¢e|c]|s-c

urm machine classical model of computation

m similar to physical memory

m  memory cells store natural numbers ~~» processes
B memory operations: zero, sUCcessor, copy

® jump-on-equal ~» conditional



actor choreographies

actor A= 0]n; A|if(p.c = q.c)then Aj else Ay
choreographies | def X = Asin A | X

nu=p.e—q|p—qll
l:=L|R
ex=¢e|c]|s-c

but...! very different computation model

m no centralized control

m  no self-change



actor choreographies

actor A= 0]n; A|if(p.c = q.c)then Aj else Ay
choreographies | def X = Asin A | X

ni=p.e—q

ex=¢e|c]|s-c

on selections
m not needed for computational completeness
m essential for projectability (e.g. to m-calculus)

m  known algorithms for inferring selections



implementation

state a state of an actor choreography is a mapping from the
set of process names to the set of values



state

implementation

implementation

a state of an actor choreography is a mapping from the
set of process names to the set of values

choreography A implements f : N” — N with inputs
pi,---,Pn and output q if:

for every o such that o(p;) = "x;7,

if £(X) is defined, then A,oc —* 0,0’ and

o'(q) ="f(%)"

if £(X) is not defined, then A, o 4* 0 (diverges)



an example: addition

addition from def X =
P,qtor if (r.c = g.c) then
pc—r; 0
else
pc—tts-c—prc—tts-c—rX
inte —r X



an example: addition

addition from def X =
P,qtor if (r.c = g.c) then
pc—r; 0
else
pc—tts-c—prc—tts-c—rX
inte —r X

~> does not compile!
m projection of p does not know whether to send a
message to r or t

m projection of t does not know whether to wait for a
message or terminate



an example: addition

addition from def X =
P,qtor if (r.c = q.c)thenr — p[L]; r — q[L]; r — t[L];
pc—r; 0
elser — p[R]; r — q[R]; r — t[R];
pc—tts-c—prc—tts-c—rX
inte —r X

~> does not compile!
m projection of p does not know whether to send a
message to r or t

m projection of t does not know whether to wait for a
message or terminate



an example: addition

addition from def X =
P,qtor if (r.c = q.c)thenr — p[L]; r — q[L]; r — t[L];
pc—r; 0
elser — p[R]; r — q[R]; r — t[R];
pc—tts-c—prc—tts-c—rX
inte —r X

~ compiles!

m  projections of p and t wait for notification from r

m projection of q also needs to be notified



partial recursive functions i/vi

successor S : N — N such that S(x) = x + 1 for all x



partial recursive functions i/vi

successor S : N — N such that S(x) = x + 1 for all x

implementation
[P =p.(s-c) = q



partial recursive functions i/vi

successor S : N — N such that S(x) = x + 1 for all x

implementation
[SIP7 =p.(s-c) =g

soundness

p'_>I_X7
p.(s-c)—=q,{p—"x} — 0, {q'_w)H_lj}



partial recursive functions ii/vi

zero  Z : N — N such that S(x) = 0 for all x

implementation
[Z]P79 =p.ec —q

soundness

p — f_X—l
pe—q,{p—"x}—0, {q o roj}



partial recursive functions iii/vi

projections P N — N such that P],(x1,...,Xxn) = xm for all X

implementation
[PR]PrPr9 = p e — q

soundness

Pi — ’_X'j
Pm-C — q, {pi — I_X,'j} — 0, {qll—> ,—X,;—l}



intermezzo: properties of the encoding

properties we use in inductive constructions
execution preserves contents of input processes

all choreographies have exactly one exit point
(occurrence of 0)



intermezzo: properties of the encoding

~~  properties we use in inductive constructions
m  execution preserves contents of input processes

m all choreographies have exactly one exit point
(occurrence of 0)

sequential for processes with only one exit point
composition A3 A is obtained by replacing 0 (in A) by A’



intermezzo: properties of the encoding

~~  properties we use in inductive constructions
m  execution preserves contents of input processes

m all choreographies have exactly one exit point
(occurrence of 0)

sequential for processes with only one exit point
composition Ag A’ is obtained by replacing 0 (in A) by A’
~ works as expected
m ifAoc—*0,0 and A, 0’ —*0,0", then
AsA o —*0,0"
m if Ao —*0,0" and A, o’ diverges, then A3 A o
diverges

m if A o diverges, then A5 A, o0 — 0,0” diverges



composition

partial recursive functions iv/vi

g,---,8 N'—=-N (C(f,g):N" > N
f'

f:NK 5 N £



partial recursive functions iv/vi

composition g,---,8 N'—=-N (C(f,g):N" > N
f:NfF 5N X f(g1(%), ..., gk(X))
implementation [C(F, &)]Pr P9 = [[gl]lzl,...,pnwri .

P1ye,Pn T o NN A
[[gk]]zkl “3 I[’c]]elk+1 “



partial recursive functions iv/vi

composition g,---,8 N'—=-N (C(f,g):N" > N
f:NK >N % f
N)]]Z)l,...,pni—)q _ [[g ]]plz 7pn’_>r1 o . '3

implementation [C(f.g
P1ye,Pn T o NN A
el i L

, . o
~+ 1 are auxiliary processes numbered from £: ri = rp4iq
in recursive calls we increment the counter:

liv1 =i+ m(gi)



partial recursive functions iv/vi

composition g,---,8 N'—=-N (C(f,g):N" > N
f:NK 5N % f(gi(R), ..., k(X))
implementation [C(F, &)]Pr P9 = [[gl]lzl,...,pnwri .
P1ye,Pn T o NN A
[[gk]]zkl ‘3 II’C]]ZL+1 “
soundness [C(f. &)]50 P9, {pi = "x '}



partial recursive functions iv/vi

composition g,---,8 N'—=-N (C(f,g):N" > N
f:NK 5N X f(g1(X), ..., k(X))

implementation [C(F, &)]Pr P9 = [[gl]lzl,...,pnwri .
P1ye,Pn T o NN A

[[gk]]zkl ‘3 I[’c]]elk+1 “
soundness [C(f. &)]50 P9, {pi = "x '}
* 58 7rqu pl = )<I—l
— |[f]]gk+1 a{errgJ(X)ﬂ}
p — FX“I



partial recursive functions iv/vi

composition g,---,8 N'—=-N (C(f,g):N" > N
f:NF 5N % f(g(%), ..., 8k(%))
implementation [C(F, &)]Pr P9 = [[gl]lzl,...,pnwri .
P1ye,Pn T o NN A
[[gk]]zkl K3 I[’c]]elk+1 “

soundness if gj(X) is undefined the corresponding step diverges
and likewise for f(g(X))



partial recursive functions v/vi

recursion f:N" - N g N2 4 N
h=R(f,g) :N"™ - N
. f(X) x0=0
X =
gk, h(k,%),%) xo=k+1



partial recursive functions v/vi

recursion f:N"— N g N2 4 N
h=R(f,g): N N
. f(X) x0=0
X =
gk, h(k,%),%) xo=k+1

implementation [A]Po--Prra =
def T = if rc.c = pp.cthenq’.c — q; 0

!
else IIg]]Zngq )P1y-sPn= Tt ; fe.C — ql;
fre€—ry ri(s-c) —=re; T

: P1y-Pn =4 o .
in [f17, gree —re T



partial recursive functions v/vi

recursion f:N"— N g N2 4 N
h=R(f,g): N N
. f(X) x0=0
X =
gk, h(k,%),%) xo=k+1

implementation [A]Po--Prra =
def T = if rc.c = pp.cthenq’.c — q; 0

!
else IIg]]Zngq )P1y-sPn= Tt ; fe.C — ql;
fre€—ry ri(s-c) —=re; T

: P1y-Pn =4 o .
in [f17, gree —re T

soundness by induction (simple)



partial recursive functions vi/vi

minimization f:N" 5N M(f):N" - N
X py.f(X,y)=0



partial recursive functions vi/vi

minimization f:N™! 5N M(f):N" - N
X py.f(X,y)=0

implementation [M(F)]Pr P9 =
— [ £]PLsPnsre=a o .
def T = [f];, § re.€ = Iy
ifr,.c =q.cthenrc.c = q; 0
elserc.c = ry; rp(s-c) = re; T
inrp.e =re; T



partial recursive functions vi/vi

minimization f:N™! 5N M(f):N" - N
X py.f(X,y)=0

implementation [M(F)]Pr P9 =
EARRS n’r H ! o .
def T = [fIp0 P 7% s ree = 1y
ifr,.c =q.cthenrc.c = q; 0
elserc.c = ry; rp(s-c) = re; T
inrp.e =re; T

soundness by induction (simple)



actor
choreographies

mainimality

A= 0]|n Alif(p.c = q.c)then Aj else Ay
| def X = Azin Ay | X

no=pe—q|p—q[l]
[:=L|R

ex=c¢l|c|s-c

no exit points ~» nothing terminates

no communication ~» no output

less expressions ~» cannot compute base cases
no selection ~~ not everything is projectable
no conditions ~» termination is decidable

no recursion ~» everything terminates



mainimality

actor A= 0]n; A|if(p.c = q.c)then Aj else Ay
choreographies | def X = Ay in Ay | X
— A2
nu=p.e—q|p—aqll
[:=L|R

ex=c¢l|c|s-c

m only zero-testing ~~ termination is decidable
(skipping proof...)

m only (arbitrary) constant-testing ~» termination is
decidable



outline

practical
consequences



what we get

m sound encoding of partial recursive functions as actor
choreographies



what we get

sound encoding of partial recursive functions as actor
choreographies

by embedding into channel choreographies ~» sound
encoding of partial recursive functions as channel

choreographies



what we get

sound encoding of partial recursive functions as actor
choreographies

by embedding into channel choreographies ~» sound
encoding of partial recursive functions as channel
choreographies

by adding necessary selections (deterministically) ~~
sound encoding of partial recursive functions as actor
processes



what we get

sound encoding of partial recursive functions as actor
choreographies

by embedding into channel choreographies ~» sound
encoding of partial recursive functions as channel
choreographies

by adding necessary selections (deterministically) ~~
sound encoding of partial recursive functions as actor
processes

by adding necessary selections and embedding into
channel choreographies ~» sound encoding of partial
recursive functions as channel processes (m-calculus)



making it more beautiful

additional primitives give more structure

m generation of fresh names “hides” auxiliary processes



making it more beautiful

additional primitives give more structure

generation of fresh names “hides” auxiliary processes

improving the embedding
state is encoded as a substitution

ignoring state: functional process
(needs a context to set up inputs)



making it more beautiful

additional primitives give more structure

generation of fresh names “hides” auxiliary processes

improving the embedding
state is encoded as a substitution

ignoring state: functional process
(needs a context to set up inputs)

operational proof of completeness for m-calculus

by slight tweaking: process that “waits” for parallel
components with input and output



conclusions

turing-completeness of actor choreographies

minimal set of primitives

identifies a deadlock-free, turing-complete fragment of
m-calculus



thank you!



	the zoo of communication
	communication & computation
	practical consequences

