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a sorting network

size  this net has 5 channels and 9 comparators
more info see d.e. knuth, the art of computer programming, vol. 3

the optimal size what is the minimal number of comparators in a sorting
problem  network on n channels (s,)?



history

optimal size s,: minimal number of comparisons to sort n inputs

n \ 1 2 3 4 5 6 7 8 9 10
knuth 1973 25 29
s, | O 1 3 5 9 12 16 19 3 o7

n| 11 12 13 14 15 16 17

3 39 45 51 56 60 73

"l 31 35 30 43 47 51 56

m values for n < 4 from information theory

m values for n =5 and n =7 by exhaustive case analysis
knuth  sp > sp—1+ 3 ~ values for n = 6,8

van voorhis s, > sp—1 + lg(n) ~ other lower bounds
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history

Sp: minimal number of comparisons to sort n inputs

n|1 2 3 4 5 6 7 8 9 10
s»| 0 1 3 5 9 12 16 19 25 29
n| 11 12 13 14 15 16 17
. |3 39 45 51 5 60 73
"| 33 37 41 45 49 53 58

generate-and-prune algorithm
intensive parallel computing

~ 16 years of cpu time to compute sy

but how do we know that these results are correct?
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the easy stuff
m  (very) constructive theory

m everything is decidable
m  many proofs by exhaustive case analysis

m elementary definitions



pros and cons

the easy stuff
m  (very) constructive theory
m everything is decidable
m  many proofs by exhaustive case analysis

m elementary definitions

main challenges
m all finite domains (channels, inputs, ...)
m reasoning about permutations (in proofs)

- [y - - ” g - " [ "
m very informal proofs (“trivial”, "exercise”, “clearly”)



comparator networks

comparator sequence of comparators (i,j) with 0 < j<n
network nis the number of channels

Definition comparator : Set := (prod nat nat).
Definition comp_net : Set := list comparator.

Definition comp_channels (n:nat) (c:comparator) :=
let (i,j) := c in (i<n) /\ (G<n) /\ (i<>j).

Definition channels (n:nat) (C:comp_net) :=
forall c:comparator, (In ¢ C) -> (comp_channels n c).



comparator networks

comparator sequence of comparators (i,j) with 0 <i#j<n
network  nis the number of channels

Definition comparator : Set := (prod nat nat).
Definition comp_net : Set := list comparator.

Definition comp_channels (n:nat) (c:comparator) :=
let (i,j) := c in (i<n) /\ (G<n) /\ (i<>j).

Definition channels (n:nat) (C:comp_net) :=
forall c:comparator, (In ¢ C) -> (comp_channels n c).

intuition  (0,2),(1,3) is a comparator network on 4 channels, but
also on 6 channels



comparator networks

comparator sequence of comparators (i,j) with 0 < j<n
network nis the number of channels

Definition comparator : Set := (prod nat nat).
Definition comp_net : Set := list comparator.

Definition comp_channels (n:nat) (c:comparator) :=
let (i,j) := c in (i<n) /\ (G<n) /\ (i<>j).

Definition channels (n:nat) (C:comp_net) :=
forall c:comparator, (In ¢ C) -> (comp_channels n c).

standard i < jforall (i,j) e C

Definition comp_standard (n:nat) (c:comparator) :=
let (i,3j) := c in (i<n) /\ (G<n) /\ (i<j).

Definition standard (n:nat) (C:comp_net) :=
forall c:comparator, (In ¢ C) -> (comp_standard n c).
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sorting networks (i/%ii)

0/1 lemma C is a sorting network on n channels iff C sorts all
(knuth 1973) inputs in {0,1}"

Inductive bin_seq : nat -> Set :=
| empty : bin_seq O
| zero : forall n:nat, bin_seq n -> bin_seq (S n)
| one : forall n:nat, bin_seq n -> bin_seq (S n).

Fixpoint get n (s:bin_seq n) (i:nat) : nat := ...
Fixpoint set n (s:bin_seq n) (i:nat) (x:nat)
: (bin_seq n) := ...
similar to Vector from the standard library
definition of sorted (property) and sort (operation)

induction principles, exhaustive enumeration

~ 70 lemmas in total



sorting networks (1i/iii)

output  C(X) denotes the output of C on X = x1...x,

Fixpoint apply (c:comparator) n (s:bin_seq n)

: (bin_seq n)
let (i,j):=c in let x:=(get s i) in let y:=(get s j) in
match (le_lt_dec x y) with

| left _ =>

| right _

end.

S

=> set (set s j x) iy

: (bin_seq n)
match C with
| nil => s

Fixpoint full_apply (C:comp_net) n (s:bin_seq n)

| cons ¢ C’ => full_apply C’ _ (apply c s)
end.

Global Notation "C [ s 1" := (full_apply C _ s) (at level 0).



output

binary outputs

sorting networks (1i/iii)

C(x) denotes the output of C on X = x1...xp

Fixpoint apply (c:comparator) m (s:bin_seq n) : (bin_seq n).
Fixpoint full_apply (C:comp_net) n (s:bin_seq n) : (bin_seq n).
outputs(C) = {C(x) | x € {0,1}"}

Definition outputs (C:comp_net) (n:nat) : (list (bin_seq n))
:= (map (full_apply C (n:=n)) (all_bin_segs n)).



sorting networks (1i/iii)

output  C(X) denotes the output of C on X = x1...x,
Fixpoint apply (c:comparator) n (s:bin_seq n) : (bin_seq n).
Fixpoint full_apply (C:comp_net) n (s:bin_seq n) : (bin_seq n).
binary outputs outputs(C) = {C(X) | x € {0,1}"}

Definition outputs (C:comp_net) (n:nat) : (list (bin_seq n))
:= (map (full_apply C (n:=n)) (all_bin_segs n)).

sorting network — C(X) is sorted for every input X

Definition sort_net (n:nat) (C:comp_net) :=
(channels n C) /\ forall s:bin_seq n, sorted C[s].

Theorem SN_char : forall C n, channels n C ->
(forall s, In s (outputs C n) -> sorted s) ->
sort_net n C.



sorting networks (iii/iii)

sanity check
Definition SN4 :=
(0[<]1 :: 2[<13 :: O[<]2 ::
1[<13 :: 1[<]2 :: nil).

Theorem SN4_SN: sort_net 4 SN4.
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sorting networks (iii/iii)

sanity check
Definition SN4 :=
(0[<]1 :: 2[<13 :: O[<]2 ::
1[<13 :: 1[<]2 :: nil).

Theorem SN4_SN: sort_net 4 SN4.

the bad news does not scale for 9 channels
the good news “C is a sorting network” is decidable

Lemma SN_dec : forall n C, channels n C ->
{sort_net n C} + {"“sort_net n C}.

m program extraction ~~ haskell program (tests all inputs)
m nearly best possible algorithm (known result)

m short formalization (~ 35 lemmas)
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the key result (i/iii)

output lemma if outputs(C) C outputs(C’) and C’; N is a sorting
(parberry 1991) network, then C; N is a sorting network

proof {0,1}" C A N_ s
N
oMo



output lemma
(parberry 1991)

proof

proof (coq’able)

the key result (i/iii)

if outputs(C) C outputs(C’) and C’; N is a sorting
network, then C; N is a sorting network

1" -a-l.g
IN
0§ LSy L

we want to show sort_net (C++N)

which reduces to forall s, sorted (C++N)[s]
but (c++N) [s] = NIC[s]]

by hypothesis there is y with cls] = ¢’ [yl
hence Nic[s11 = N[C’[y]] = (C’++N) [y]
which is sorted by sortmet (c’++m)
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permuted if w(outputs(C)) C outputs(C’) for some permutation 7
output lemma and C’ extends to a sorting network, then C extends to
a sorting network
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the key result (ii/1ii)

if w(outputs(C)) C outputs(C’) for some permutation 7

permuted
and C’ extends to a sorting network, then C extends to

output lemma
a sorting network

Ay 0,1} —C - A 1(S)

on—< .M.



the key result (ii/1ii)

if w(outputs(C)) C outputs(C’) for some permutation 7

permuted
and C’ extends to a sorting network, then C extends to

output lemma
a sorting network

st(m(N)) S

proof
{0,13n—=
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the key result (ii/1ii)

permuted if w(outputs(C)) C outputs(C’) for some permutation 7
output lemma and C’ extends to a sorting network, then C extends to
a sorting network

proof -
(0,1} C A st(m(N)) S

e

on—< .M.

“argument”  |outputs(C’; N)| > |outputs(C;st(m(N)))|

only sorted sequences includes all sorted sequences
therefore these sets are equal




permuted
output lemma

proof

“argument”

by the way
(00ps)

the key result (ii/1ii)

if w(outputs(C)) C outputs(C’) for some permutation 7
and C’ extends to a sorting network, then C extends to
a sorting network

C A st(m(N)) 13

e

on—< .M.

{0,1}"

loutputs(C’; N)| > |outputs(C;st(m(N)))|

only sorted sequences includes all sorted sequences
therefore these sets are equal

published proof uses: m(outputs(S)) = outputs(7(S))
coq says: 7(outputs(S)) = 7 L(outputs((S)))



the key result (ii/1ii)

permuted if w(outputs(C)) C outputs(C’) for some permutation 7
output lemma and C’ extends to a sorting network, then C extends to
a sorting network

proof -
(0,1} C A st(m(N)) S

e

on—< .M.

“argument”  |outputs(C’; N)| > |outputs(C;st(m(N)))|

only sorted sequences includes all sorted sequences
therefore these sets are equal

~~ how do we formalize this?



standardization

lemma

standardization (i/ii)

take the first non-standard comparator (/,;) and

interchange / and j in all subsequent positions; repeat
until network is standard

if C is a sorting network, then so is st(C)
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standardization  take the first non-standard comparator (i, ) and

interchange / and j in all subsequent positions; repeat
until network is standard

lemma if C is a sorting network, then so is st(C)

proof the elements of outputs(st(C)) are obtained by
permuting all elements of outputs(C) in the same way;
since st(C) does not change sorted inputs, this
permutation must be the identity



standardization (i/ii)

standardization  take the first non-standard comparator (i, ) and
interchange / and j in all subsequent positions; repeat
until network is standard

lemma if C is a sorting network, then so is st(C)
proof the elements of outputs(st(C)) are obtained by
permuting all elements of outputs(C) in the same way;

since st(C) does not change sorted inputs, this
permutation must be the identity

(again the cardinality argument. . .)



standardization (ii/ii)

standardization  Function standardize (C:comp_net) {measure length C}

: comp_net := match C with
| nil => nil
| cons ¢ C’ => let (x,y) := c in

match (le_lt_dec x y) with
| left _ => (x[<]y :: standardize C’)
| right _ => (y[<]x :: standardize (permute x y C’))
end
end.



standardization (ii/ii)

standardization  Function standardize (C:comp_net) {measure length C}
: comp_net := match C with
| nil => nil
| cons ¢ C’ => let (x,y) := c in
match (le_lt_dec x y) with
| left _ => (x[<]y :: standardize C’)
| right _ => (y[<]x :: standardize (permute x y C’))
end
end.
B not structurally decreasing
m lots of implicit properties
[ preserves size and number of channels
[ preserves standard prefix
m  result is standard
[ idempotent



standardization (ii/ii)

standardization  Function standardize (C:comp_net) {measure length C}

: comp_net := match C with
| nil => nil
| cons ¢ C’ => let (x,y) := c in

match (le_lt_dec x y) with
| left _ => (x[<]y :: standardize C’)
| right _ => (y[<]x :: standardize (permute x y C’))
end
end.

B not structurally decreasing

m lots of implicit properties

lemma  Theorem standardization_sort : forall C n,
sort_net n C -> sort_net n (standardize C).



standardization (ii/ii)

standardization  Function standardize (C:comp_net) {measure length C}

: comp_net := match C with
| nil => nil
| cons ¢ C’ => let (x,y) := c in

match (le_lt_dec x y) with
| left _ => (x[<]y :: standardize C’)
| right _ => (y[<]x :: standardize (permute x y C’))
end
end.

B not structurally decreasing

m lots of implicit properties

lemma  Theorem standardization_sort : forall C n,
sort_net n C -> sort_net n (standardize C).

~= requires ~ 60 lemmas about permutations



subsumption

definition C =, C"if w(outputs(C)) C outputs(C’)
C = C'if C =, C’ for some permutation 7

~> subsumption is reflexive and transitive



subsumption

definition C =, C"if w(outputs(C)) C outputs(C’)
C = C'if C =, C’ for some permutation 7

Variable n:nat.

Variables C C’:comp_net.
Variable P:permut.

Variable HP:permutation n P.

Definition subsumption :=
forall s:bin_seq n, In s (outputs C n) ->
In (apply_perm P s) (outputs C’ n).

Lemma subsumption_dec : {subsumption} + {“subsumption}.
Theorem BZ : standard n C -> subsumption ->

sort_net n (C’++N) ->
sort_net n (standardize (C ++ apply_perm_to_met P N)).



proof (coq’able)

the key result (iii/1ii)

Theorem BZ : standard n C -> subsumption ->
sort_net n (C’++N) ->
sort_net n (standardize (C ++ apply_perm_to_net P N)).

[write 7 (W) for apply_perm_tonet P N]

since standardize (C++r(N)) is standard, it does not affect
sorted sequences, so we show that

(C++m(N)) [s] = (C++m (M) [sort s] for every s
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proof (coq’able)

the key result (iii/1ii)

Theorem BZ : standard n C -> subsumption ->
sort_net n (C’++N) ->
sort_net n (standardize (C ++ apply_perm_to_net P N)).

[write 7 (W) for apply_perm_tonet P N]

since standardize (C++r(N)) is standard, it does not affect
sorted sequences, so we show that
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proof (coq’able)

the key result (iii/1ii)

Theorem BZ : standard n C -> subsumption ->
sort_net n (C’++N) ->
sort_net n (standardize (C ++ apply_perm_to_net P N)).

[write 7 (W) for apply_perm_tonet P N]

since standardize (C++r(N)) is standard, it does not affect
sorted sequences, so we show that

(C++m(N)) [s] = (C++m (M) [sort s] for every s

or equivalently that

N[7(C[s])) = N[w(C[sort s])]

N[x(C[s1)] = N[C’[yl] = (C’++N) [y] = sort y for some y
likewise N[r(C[sort s1)]1 = sort y’ for some y’

and sort y = sort y’ (same number of zeroes)

~> requires going back to s and sort s
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the algorithm

init  set Ry = {0} and k=0

repeat until k > 1 and |R]| =1

generate N}, ; extend each net in R/ by one
comparator in all possible ways

n
prune to R}, keep only one element from each
minimal equivalence class w.r.t. <7

step increase k
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the algorithm

set Rj = {0} and k =0

until k > 1and |R]| =1
generate N}, ; extend each net in R/ by one
comparator in all possible ways

n
prune to R}, keep only one element from each
minimal equivalence class w.r.t. <7

step increase k

quadratic step
inner loop searches among all permutations
typically fails

record successful subsumptions



the algorithm

init  set Ry = {0} and k=0

repeat until k > 1 and |R]| =1

generate N}, ; extend each net in R/ by one
comparator in all possible ways

n
prune to R}, keep only one element from each
minimal equivalence class w.r.t. <7

step increase k

certified checker using recorded subsumptions as an oracle
m replace pruning cycle by oracle calls
m skeptic approach towards oracle
m use program extraction
|

verifies all cases up to sg, requires ~18 years for sy. ..



checker soundness

Definition Oracle := list (comp_net * comp_net * (list nat)).

Inductive Answer : Set :=
| yes : nat -> nat -> Answer
| no : forall n k:nat, forall R:list comp_net,
NoDup R ->
(forall C, In C R -> length C = k) —->
(forall C, In C R -> standard n C) -> Answer
| maybe : Answer.

Fixpoint Generate_and_Prune (n k:nat) (0:list Oracle)
Answer.

Theorem GP_no : forall n k 0 R HRO HR1 HR2,
Generate_and_Prune n k 0 = no n k R HRO HR1 HR2 ->
forall C, sort_net n C -> length C > k.

Theorem GP_yes : forall n k 0 m,
Generate_and_Prune n k 0 = yes n m ->
(forall C, sort_net n C -> length C >= m) /\
exists C, sort_net n C /\ length C = m.
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conclusions & future work

results
m theory of optimal-size sorting networks
m formal verification of exact values of s, for n < 8

m optimizations to the checker allowed verification of sg

next episodes

m formal proof of van voorhis’ s, > s,_1 + Ig(n) to obtain
510
m other problems in sorting networks

B improvements to extraction



thank you!
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