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models of communicating systems

process calculi π-calculus and its variants

low-level modeling of communication

too technical for many purposes

many interesting fragments are undecidable

choreographies

global view of the system

directed communication (from alice to bob)

deadlock-free by design

compilable to process calculi
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choreographies and computation

 trivially turing-complete
(arbitrary computation at each process)

 typically geared towards applications
(many complex primitives)

focus communication

reduce local computation to a minimum

reduce system primitives to a minimum

how far can we go?

π-calculus direct encoding of λ-calculus is unsatisfactory

counter-intuitive notion of computation

data and programs at the same level
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our contribution

focus of this talk:

minimal choreographies

their turing completeness
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minimal
choreographies

M ::= 0 | η;M | if (p.c = q.c) thenM1 elseM2

| def X = M2 inM1 | X

η ::= p.e → q | p→ q[l ]

l ::= l | r

e ::= ε | c | s · c /2

on selections

not needed for computational completeness

essential (?) for projectability (e.g. to π-calculus)

known algorithms for inferring selections



implementation of functions

state a state of an minimal choreography is a mapping from
the set of process names to the set of values

implementation choreography M implements f : Nn → N with inputs
p1, . . . , pn and output q if:
for every σ such that σ(pi ) = pxiq,

if f (x̃) is defined, then M, σ →∗ 0, σ′ and
σ′(q) = pf (x̃)q

if f (x̃) is not defined, then M, σ 6→∗ 0 (diverges)
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using t

def X =

if (r.c = q.c) then

p.c→ r; 0

else

p.c→ t; t.(s · c)→ p;
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in t.ε→ r; X
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an example: addition

addition
from p, q to r

using t

def X =

if (r.c = q.c) then r→ p[l]; r→ q[l]; r→ t[l];

p.c→ r; 0

else r→ p[r]; r→ q[r]; r→ t[r];

p.c→ t; t.(s · c)→ p;

r.c→ t; t.(s · c)→ r; X

in t.ε→ r; X

 compiles!

projections of p and t wait for notification from r

projection of q also needs to be notified



partial recursive functions i/vi

successor S : N→ N such that S(x) = x + 1 for all x

implementation
[[S ]]p7→q = p.(s · c)→ q

soundness

p.(s · c)→ q, {p 7→ pxq} −→ 0,

{
p 7→ pxq
q 7→ px + 1q

}
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partial recursive functions ii/vi

zero Z : N→ N such that S(x) = 0 for all x

implementation
[[Z ]]p 7→q = p.ε→ q

soundness

p.ε→ q, {p 7→ pxq} −→ 0,

{
p 7→ pxq
q 7→ p0q

}



partial recursive functions iii/vi

projections Pn
m : N→ N such that Pn

m(x1, . . . , xn) = xm for all x̃

implementation
[[Pn

m]]p1,...,pn 7→q = pm.c→ q

soundness

pm.c→ q, {pi 7→ pxiq} −→ 0,

{
pi 7→ pxiq
q 7→ pxmq

}



intermezzo: properties of the encoding

 properties we use in inductive constructions

execution preserves contents of input processes

all choreographies have exactly one exit point
(occurrence of 0)

sequential
composition

for processes with only one exit point
M # M ′ is obtained by replacing 0 (in M) by M ′

 works as expected

if M, σ →∗ 0, σ′ and M ′, σ′ →∗ 0, σ′′, then
M # M ′, σ →∗ 0, σ′′

if M, σ →∗ 0, σ′ and M ′, σ′ diverges, then M # M ′, σ
diverges

if M, σ diverges, then M # M ′, σ → 0, σ′′ diverges
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composition g1, . . . , gk : Nn → N C (f , g̃) : Nn → N
f : Nk → N x̃ 7→ f (g1(x̃), . . . , gk(x̃))

implementation [[C (f , g̃)]]p1,...,pn 7→q
` = [[g1]]

p1,...,pn 7→r′1
`1

# . . . #

[[gk ]]
p1,...,pn 7→r′k
`k

# [[f ]]
r′1,...,r
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 r′i are auxiliary processes numbered from `: r′i = r`+i−1
in recursive calls we increment the counter:
`i+1 = `i + π(gi )
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partial recursive functions iv/vi

composition g1, . . . , gk : Nn → N C (f , g̃) : Nn → N
f : Nk → N x̃ 7→ f (g1(x̃), . . . , gk(x̃))

implementation [[C (f , g̃)]]p1,...,pn 7→q
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`1

# . . . #

[[gk ]]
p1,...,pn 7→r′k
`k
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r′1,...,r

′
k 7→q

`k+1

soundness if gj(x̃) is undefined the corresponding step diverges

and likewise for f (g̃(x̃))



partial recursive functions v/vi

recursion f : Nn → N g : Nn+2 → N
h = R(f , g) : Nn+1 → N

x̃ 7→

{
f (~x) x0 = 0

g(k , h(k , x̃), x̃) x0 = k + 1

implementation [[h]]p0,...,pn 7→q =

def T = if rc.c = p0.c then q′.c→ q; 0

else [[g ]]rc,q
′,p1,...,pn 7→rt

`g
# rt.c→ q′;

rc.c→ rt; rt.(s · c)→ rc; T

in [[f ]]p1,...,pn 7→q′

`f
# rt.ε→ rc; T

soundness by induction (simple)
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minimal
choreographies

M ::= 0 | η;M | if (p.c = q.c) thenM1 elseM2

| def X = M2 inM1 | X

η ::= p.e → q | p→ q[l ]

l ::= l | r

e ::= ε | c | s · c /2

no exit points  nothing terminates

no communication  no output

less expressions  cannot compute base cases

no selection  not everything is projectable

no conditions  termination is decidable

no recursion  everything terminates



minimality

minimal
choreographies

M ::= 0 | η;M | if (p.c = q.c) thenM1 elseM2

| def X = M2 inM1 | X

η ::= p.e → q | p→ q[l ]

l ::= l | r

e ::= ε | c | s · c /2

only zero-testing  termination is decidable
(skipping proof. . . )

only (arbitrary) constant-testing  termination is
decidable
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what we get

sound encoding of partial recursive functions as minimal
choreographies
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encoding of partial recursive functions in that model

by adding necessary selections (deterministically)  
sound encoding of partial recursive functions as minimal
processes

by adding necessary selections and embedding into other
choreography models  sound encoding of partial
recursive functions in a process model (in particular,
π-calculus)
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conclusions

turing completeness of minimal choreographies

minimal set of primitives

identifies a deadlock-free, turing-complete fragment of
π-calculus

core language for studying fundamental properties of
choreographies



thank you!
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