
a turing-complete choreography calculus

lúıs cruz-filipe

(joint work with fabrizio montesi)

department of mathematics and computer science
university of southern denmark

aḿılcar sernadas festschrift
april 23th, 2016

outline

the zoo of
communication

communication
& computation

practical
consequences

models of communicating systems

process calculi π-calculus and its variants

low-level modeling of communication

too technical for many purposes

many interesting fragments are undecidable

choreographies

global view of the system

directed communication (from alice to bob)

deadlock-free by design

compilable to process calculi

models of communicating systems

process calculi π-calculus and its variants

low-level modeling of communication

too technical for many purposes

many interesting fragments are undecidable

choreographies

global view of the system

directed communication (from alice to bob)

deadlock-free by design

compilable to process calculi

choreographies and computation

 trivially turing-complete
(arbitrary computation at each process)

 typically geared towards applications
(many complex primitives)

focus communication

reduce local computation to a minimum

reduce system primitives to a minimum

how far can we go?

π-calculus direct encoding of λ-calculus is unsatisfactory

counter-intuitive notion of computation

data and programs at the same level

choreographies and computation

 trivially turing-complete
(arbitrary computation at each process)

 typically geared towards applications
(many complex primitives)

focus communication

reduce local computation to a minimum

reduce system primitives to a minimum

how far can we go?

π-calculus direct encoding of λ-calculus is unsatisfactory

counter-intuitive notion of computation

data and programs at the same level

choreographies and computation

 trivially turing-complete
(arbitrary computation at each process)

 typically geared towards applications
(many complex primitives)

focus communication

reduce local computation to a minimum

reduce system primitives to a minimum

how far can we go?

π-calculus direct encoding of λ-calculus is unsatisfactory

counter-intuitive notion of computation

data and programs at the same level

choreographies and computation

 trivially turing-complete
(arbitrary computation at each process)

 typically geared towards applications
(many complex primitives)

focus communication

reduce local computation to a minimum

reduce system primitives to a minimum

how far can we go?

π-calculus direct encoding of λ-calculus is unsatisfactory

counter-intuitive notion of computation

data and programs at the same level

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

M
computes // M′

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

M
computes //

co
m
p
il
es

��

M′

co
m
p
il
es

��
PM PM′

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

M
computes //

co
m
p
il
es

��

M′

co
m
p
il
es

��
PM

computes // PM′

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

C C′

M
computes //

==

em
be
dd
in
g

M′

<<

em
be
dd
ed

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

C
computes // C′

M
computes //

==

em
be
dd
in
g

M′

<<

em
be
dd
ed

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

C
computes //

co
m
p
il
es

��

C′

co
m
p
il
es

��
PC PC′

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

C
computes //

co
m
p
il
es

��

C′

co
m
p
il
es

��
PC

computes // PC′

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

C
computes //

co
m
p
il
es

��

C′

co
m
p
il
es

��

M
computes //

co
m
p
il
es

��

==

em
be
dd
in
g

M′

co
m
p
il
es

��

<<

em
be
dd
ed

PC
computes// PC′

PM
computes // PM′

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

C
computes //

co
m
p
il
es

��

C′

co
m
p
il
es

��

M
computes //

co
m
p
il
es

��

==

em
be
dd
in
g

M′

co
m
p
il
es

��

<<

em
be
dd
ed

PC
computes// PC′

PM
computes //

bi
sim

ila
r

PM′

bi
sim

ila
r

our contribution

focus of this talk:

minimal choreographies

their turing completeness

C
computes //

co
m
p
il
es

��

C′

co
m
p
il
es

��

M
computes //

co
m
p
il
es

��

==

em
be
dd
in
g

M′

co
m
p
il
es

��

<<

em
be
dd
ed

PC
computes// PC′

PM
computes //

bi
sim

ila
r

PM′

bi
sim

ila
r

outline

the zoo of
communication

communication
& computation

practical
consequences

typical primitives in choreographies

termination

message passing

label selection

conditionals

recursion

process creation

channel creation

channel passing

role assignment

. . .

typical primitives in choreographies

termination

message passing

label selection

conditionals

recursion

process creation

channel creation

channel passing

role assignment

. . .

typical primitives in choreographies

termination

message passing

label selection

conditionals

recursion

process creation

channel creation

channel passing

role assignment

. . .

minimal choreographies

minimal
choreographies

M ::= 0 | η;M | if (p.c = q.c) thenM1 elseM2

| def X = M2 inM1 | X

η ::= p.e → q | p→ q[l]

l ::= l | r

e ::= ε | c | s · c /2

minimal choreographies

minimal
choreographies

M ::= 0 | η;M | if (p.c = q.c) thenM1 elseM2

| def X = M2 inM1 | X

η ::= p.e → q | p→ q[l]

l ::= l | r

e ::= ε | c | s · c /2

urm machine classical model of computation

similar to physical memory

memory cells store natural numbers

memory operations: zero, successor, copy

jump-on-equal

minimal choreographies

minimal
choreographies

M ::= 0 | η;M | if (p.c = q.c) thenM1 elseM2

| def X = M2 inM1 | X

η ::= p.e → q | p→ q[l]

l ::= l | r

e ::= ε | c | s · c /2

urm machine classical model of computation

similar to physical memory

memory cells store natural numbers processes

memory operations: zero, successor, copy

jump-on-equal conditional

minimal choreographies

minimal
choreographies

M ::= 0 | η;M | if (p.c = q.c) thenM1 elseM2

| def X = M2 inM1 | X

η ::= p.e → q | p→ q[l]

l ::= l | r

e ::= ε | c | s · c /2

but. . . ! very different computation model

no centralized control

no self-change

minimal choreographies

minimal
choreographies

M ::= 0 | η;M | if (p.c = q.c) thenM1 elseM2

| def X = M2 inM1 | X

η ::= p.e → q | p→ q[l]

l ::= l | r

e ::= ε | c | s · c /2

on selections

not needed for computational completeness

essential (?) for projectability (e.g. to π-calculus)

known algorithms for inferring selections

implementation of functions

state a state of an minimal choreography is a mapping from
the set of process names to the set of values

implementation choreography M implements f : Nn → N with inputs
p1, . . . , pn and output q if:
for every σ such that σ(pi) = pxiq,

if f (x̃) is defined, then M, σ →∗ 0, σ′ and
σ′(q) = pf (x̃)q

if f (x̃) is not defined, then M, σ 6→∗ 0 (diverges)

implementation of functions

state a state of an minimal choreography is a mapping from
the set of process names to the set of values

implementation choreography M implements f : Nn → N with inputs
p1, . . . , pn and output q if:
for every σ such that σ(pi) = pxiq,

if f (x̃) is defined, then M, σ →∗ 0, σ′ and
σ′(q) = pf (x̃)q

if f (x̃) is not defined, then M, σ 6→∗ 0 (diverges)

an example: addition

addition
from p, q to r

using t

def X =

if (r.c = q.c) then

p.c→ r; 0

else

p.c→ t; t.(s · c)→ p;

r.c→ t; t.(s · c)→ r; X

in t.ε→ r; X

an example: addition

addition
from p, q to r

using t

def X =

if (r.c = q.c) then

p.c→ r; 0

else

p.c→ t; t.(s · c)→ p;

r.c→ t; t.(s · c)→ r; X

in t.ε→ r; X

 does not compile!

projection of p does not know whether to send a
message to r or t

projection of t does not know whether to wait for a
message or terminate

an example: addition

addition
from p, q to r

using t

def X =

if (r.c = q.c) then r→ p[l]; r→ q[l]; r→ t[l];

p.c→ r; 0

else r→ p[r]; r→ q[r]; r→ t[r];

p.c→ t; t.(s · c)→ p;

r.c→ t; t.(s · c)→ r; X

in t.ε→ r; X

 does not compile!

projection of p does not know whether to send a
message to r or t

projection of t does not know whether to wait for a
message or terminate

an example: addition

addition
from p, q to r

using t

def X =

if (r.c = q.c) then r→ p[l]; r→ q[l]; r→ t[l];

p.c→ r; 0

else r→ p[r]; r→ q[r]; r→ t[r];

p.c→ t; t.(s · c)→ p;

r.c→ t; t.(s · c)→ r; X

in t.ε→ r; X

 compiles!

projections of p and t wait for notification from r

projection of q also needs to be notified

partial recursive functions i/vi

successor S : N→ N such that S(x) = x + 1 for all x

implementation
[[S]]p7→q = p.(s · c)→ q

soundness

p.(s · c)→ q, {p 7→ pxq} −→ 0,

{
p 7→ pxq
q 7→ px + 1q

}

partial recursive functions i/vi

successor S : N→ N such that S(x) = x + 1 for all x

implementation
[[S]]p7→q = p.(s · c)→ q

soundness

p.(s · c)→ q, {p 7→ pxq} −→ 0,

{
p 7→ pxq
q 7→ px + 1q

}

partial recursive functions i/vi

successor S : N→ N such that S(x) = x + 1 for all x

implementation
[[S]]p7→q = p.(s · c)→ q

soundness

p.(s · c)→ q, {p 7→ pxq} −→ 0,

{
p 7→ pxq
q 7→ px + 1q

}

partial recursive functions ii/vi

zero Z : N→ N such that S(x) = 0 for all x

implementation
[[Z]]p 7→q = p.ε→ q

soundness

p.ε→ q, {p 7→ pxq} −→ 0,

{
p 7→ pxq
q 7→ p0q

}

partial recursive functions iii/vi

projections Pn
m : N→ N such that Pn

m(x1, . . . , xn) = xm for all x̃

implementation
[[Pn

m]]p1,...,pn 7→q = pm.c→ q

soundness

pm.c→ q, {pi 7→ pxiq} −→ 0,

{
pi 7→ pxiq
q 7→ pxmq

}

intermezzo: properties of the encoding

 properties we use in inductive constructions

execution preserves contents of input processes

all choreographies have exactly one exit point
(occurrence of 0)

sequential
composition

for processes with only one exit point
M # M ′ is obtained by replacing 0 (in M) by M ′

 works as expected

if M, σ →∗ 0, σ′ and M ′, σ′ →∗ 0, σ′′, then
M # M ′, σ →∗ 0, σ′′

if M, σ →∗ 0, σ′ and M ′, σ′ diverges, then M # M ′, σ
diverges

if M, σ diverges, then M # M ′, σ → 0, σ′′ diverges

intermezzo: properties of the encoding

 properties we use in inductive constructions

execution preserves contents of input processes

all choreographies have exactly one exit point
(occurrence of 0)

sequential
composition

for processes with only one exit point
M # M ′ is obtained by replacing 0 (in M) by M ′

 works as expected

if M, σ →∗ 0, σ′ and M ′, σ′ →∗ 0, σ′′, then
M # M ′, σ →∗ 0, σ′′

if M, σ →∗ 0, σ′ and M ′, σ′ diverges, then M # M ′, σ
diverges

if M, σ diverges, then M # M ′, σ → 0, σ′′ diverges

intermezzo: properties of the encoding

 properties we use in inductive constructions

execution preserves contents of input processes

all choreographies have exactly one exit point
(occurrence of 0)

sequential
composition

for processes with only one exit point
M # M ′ is obtained by replacing 0 (in M) by M ′

 works as expected

if M, σ →∗ 0, σ′ and M ′, σ′ →∗ 0, σ′′, then
M # M ′, σ →∗ 0, σ′′

if M, σ →∗ 0, σ′ and M ′, σ′ diverges, then M # M ′, σ
diverges

if M, σ diverges, then M # M ′, σ → 0, σ′′ diverges

partial recursive functions iv/vi

composition g1, . . . , gk : Nn → N C (f , g̃) : Nn → N
f : Nk → N x̃ 7→ f (g1(x̃), . . . , gk(x̃))

implementation [[C (f , g̃)]]p1,...,pn 7→q
` = [[g1]]

p1,...,pn 7→r′1
`1

. . .

[[gk]]
p1,...,pn 7→r′k
`k

[[f]]
r′1,...,r

′
k 7→q

`k+1

partial recursive functions iv/vi

composition g1, . . . , gk : Nn → N C (f , g̃) : Nn → N
f : Nk → N x̃ 7→ f (g1(x̃), . . . , gk(x̃))

implementation [[C (f , g̃)]]p1,...,pn 7→q
` = [[g1]]

p1,...,pn 7→r′1
`1

. . .

[[gk]]
p1,...,pn 7→r′k
`k

[[f]]
r′1,...,r

′
k 7→q

`k+1

partial recursive functions iv/vi

composition g1, . . . , gk : Nn → N C (f , g̃) : Nn → N
f : Nk → N x̃ 7→ f (g1(x̃), . . . , gk(x̃))

implementation [[C (f , g̃)]]p1,...,pn 7→q
` = [[g1]]

p1,...,pn 7→r′1
`1

. . .

[[gk]]
p1,...,pn 7→r′k
`k

[[f]]
r′1,...,r

′
k 7→q

`k+1

 r′i are auxiliary processes numbered from `: r′i = r`+i−1
in recursive calls we increment the counter:
`i+1 = `i + π(gi)

partial recursive functions iv/vi

composition g1, . . . , gk : Nn → N C (f , g̃) : Nn → N
f : Nk → N x̃ 7→ f (g1(x̃), . . . , gk(x̃))

implementation [[C (f , g̃)]]p1,...,pn 7→q
` = [[g1]]

p1,...,pn 7→r′1
`1

. . .

[[gk]]
p1,...,pn 7→r′k
`k

[[f]]
r′1,...,r

′
k 7→q

`k+1

soundness [[C (f , g̃)]]p1,...,pn 7→q
` , {pi 7→ pxiq}

−→∗ [[f]]
r′1,...,r

′
k 7→q

`k+1
,

{
pi 7→ pxiq
r′j 7→ pgj(x̃)q

}

partial recursive functions iv/vi

composition g1, . . . , gk : Nn → N C (f , g̃) : Nn → N
f : Nk → N x̃ 7→ f (g1(x̃), . . . , gk(x̃))

implementation [[C (f , g̃)]]p1,...,pn 7→q
` = [[g1]]

p1,...,pn 7→r′1
`1

. . .

[[gk]]
p1,...,pn 7→r′k
`k

[[f]]
r′1,...,r

′
k 7→q

`k+1

soundness [[C (f , g̃)]]p1,...,pn 7→q
` , {pi 7→ pxiq}

−→∗ [[f]]
r′1,...,r

′
k 7→q

`k+1
,

{
pi 7→ pxiq
r′j 7→ pgj(x̃)q

}

−→∗ 0,


pi 7→ pxiq
r′j 7→ pgj(x̃)q

q 7→ pf (g̃(x̃))q



partial recursive functions iv/vi

composition g1, . . . , gk : Nn → N C (f , g̃) : Nn → N
f : Nk → N x̃ 7→ f (g1(x̃), . . . , gk(x̃))

implementation [[C (f , g̃)]]p1,...,pn 7→q
` = [[g1]]

p1,...,pn 7→r′1
`1

. . .

[[gk]]
p1,...,pn 7→r′k
`k

[[f]]
r′1,...,r

′
k 7→q

`k+1

soundness if gj(x̃) is undefined the corresponding step diverges

and likewise for f (g̃(x̃))

partial recursive functions v/vi

recursion f : Nn → N g : Nn+2 → N
h = R(f , g) : Nn+1 → N

x̃ 7→

{
f (~x) x0 = 0

g(k , h(k , x̃), x̃) x0 = k + 1

implementation [[h]]p0,...,pn 7→q =

def T = if rc.c = p0.c then q′.c→ q; 0

else [[g]]rc,q
′,p1,...,pn 7→rt

`g
rt.c→ q′;

rc.c→ rt; rt.(s · c)→ rc; T

in [[f]]p1,...,pn 7→q′

`f
rt.ε→ rc; T

soundness by induction (simple)

partial recursive functions v/vi

recursion f : Nn → N g : Nn+2 → N
h = R(f , g) : Nn+1 → N

x̃ 7→

{
f (~x) x0 = 0

g(k , h(k , x̃), x̃) x0 = k + 1

implementation [[h]]p0,...,pn 7→q =

def T = if rc.c = p0.c then q′.c→ q; 0

else [[g]]rc,q
′,p1,...,pn 7→rt

`g
rt.c→ q′;

rc.c→ rt; rt.(s · c)→ rc; T

in [[f]]p1,...,pn 7→q′

`f
rt.ε→ rc; T

soundness by induction (simple)

partial recursive functions v/vi

recursion f : Nn → N g : Nn+2 → N
h = R(f , g) : Nn+1 → N

x̃ 7→

{
f (~x) x0 = 0

g(k , h(k , x̃), x̃) x0 = k + 1

implementation [[h]]p0,...,pn 7→q =

def T = if rc.c = p0.c then q′.c→ q; 0

else [[g]]rc,q
′,p1,...,pn 7→rt

`g
rt.c→ q′;

rc.c→ rt; rt.(s · c)→ rc; T

in [[f]]p1,...,pn 7→q′

`f
rt.ε→ rc; T

soundness by induction (simple)

partial recursive functions vi/vi

minimization f : Nn+1 → N M(f) : Nn → N
x̃ 7→ µy .f (~x , y) = 0

implementation [[M(f)]]p1,...,pn 7→q =

def T = [[f]]p1,...,pn,rc 7→q′

`f
rc.ε→ rz;

if rz.c = q′.c then rc.c→ q; 0

else rc.c→ rz; rz.(s · c)→ rc; T

in rz.ε→ rc; T

soundness by induction (simple)

partial recursive functions vi/vi

minimization f : Nn+1 → N M(f) : Nn → N
x̃ 7→ µy .f (~x , y) = 0

implementation [[M(f)]]p1,...,pn 7→q =

def T = [[f]]p1,...,pn,rc 7→q′

`f
rc.ε→ rz;

if rz.c = q′.c then rc.c→ q; 0

else rc.c→ rz; rz.(s · c)→ rc; T

in rz.ε→ rc; T

soundness by induction (simple)

partial recursive functions vi/vi

minimization f : Nn+1 → N M(f) : Nn → N
x̃ 7→ µy .f (~x , y) = 0

implementation [[M(f)]]p1,...,pn 7→q =

def T = [[f]]p1,...,pn,rc 7→q′

`f
rc.ε→ rz;

if rz.c = q′.c then rc.c→ q; 0

else rc.c→ rz; rz.(s · c)→ rc; T

in rz.ε→ rc; T

soundness by induction (simple)

minimality

minimal
choreographies

M ::= 0 | η;M | if (p.c = q.c) thenM1 elseM2

| def X = M2 inM1 | X

η ::= p.e → q | p→ q[l]

l ::= l | r

e ::= ε | c | s · c /2

no exit points nothing terminates

no communication no output

less expressions cannot compute base cases

no selection not everything is projectable

no conditions termination is decidable

no recursion everything terminates

minimality

minimal
choreographies

M ::= 0 | η;M | if (p.c = q.c) thenM1 elseM2

| def X = M2 inM1 | X

η ::= p.e → q | p→ q[l]

l ::= l | r

e ::= ε | c | s · c /2

only zero-testing termination is decidable
(skipping proof. . .)

only (arbitrary) constant-testing termination is
decidable

outline

the zoo of
communication

communication
& computation

practical
consequences

what we get

sound encoding of partial recursive functions as minimal
choreographies

by embedding into other choreography models sound
encoding of partial recursive functions in that model

by adding necessary selections (deterministically)
sound encoding of partial recursive functions as minimal
processes

by adding necessary selections and embedding into other
choreography models sound encoding of partial
recursive functions in a process model (in particular,
π-calculus)

what we get

sound encoding of partial recursive functions as minimal
choreographies

by embedding into other choreography models sound
encoding of partial recursive functions in that model

by adding necessary selections (deterministically)
sound encoding of partial recursive functions as minimal
processes

by adding necessary selections and embedding into other
choreography models sound encoding of partial
recursive functions in a process model (in particular,
π-calculus)

what we get

sound encoding of partial recursive functions as minimal
choreographies

by embedding into other choreography models sound
encoding of partial recursive functions in that model

by adding necessary selections (deterministically)
sound encoding of partial recursive functions as minimal
processes

by adding necessary selections and embedding into other
choreography models sound encoding of partial
recursive functions in a process model (in particular,
π-calculus)

what we get

sound encoding of partial recursive functions as minimal
choreographies

by embedding into other choreography models sound
encoding of partial recursive functions in that model

by adding necessary selections (deterministically)
sound encoding of partial recursive functions as minimal
processes

by adding necessary selections and embedding into other
choreography models sound encoding of partial
recursive functions in a process model (in particular,
π-calculus)

conclusions

turing completeness of minimal choreographies

minimal set of primitives

identifies a deadlock-free, turing-complete fragment of
π-calculus

core language for studying fundamental properties of
choreographies

thank you!

	the zoo of communication
	communication & computation
	practical consequences

