
foundations of choreographies

lúıs cruz-filipe

(joint work with fabrizio montesi)

department of mathematics and computer science
university of southern denmark

betty meeting
october 6th, 2016

a core choreography calculus

goal develop a minimalistic choreography calculus

study foundational questions

obtain general results

primitives what characterizes a choreography language?

“alice to bob”-style communication: A.e → B

label (choice) selection: A→ B[`]

 other common choreographic primitives

process creation

channel creation and channel passing

role assignment

. . .

a core choreography calculus

goal develop a minimalistic choreography calculus

study foundational questions

obtain general results

primitives what characterizes a choreography language?

“alice to bob”-style communication: A.e → B

label (choice) selection: A→ B[`]

 other common choreographic primitives

process creation

channel creation and channel passing

role assignment

. . .

a core choreography calculus

goal develop a minimalistic choreography calculus

study foundational questions

obtain general results

primitives what characterizes a choreography language?

“alice to bob”-style communication: A.e → B

label (choice) selection: A→ B[`]

 other common choreographic primitives

process creation

channel creation and channel passing

role assignment

. . .

our core model

core
choreographies

C ::= 0 | η;C | if (p.∗ = q.∗) thenC1 elseC2

| def X = C2 inC1 | X

η ::= p.e → q | p→ q[l] l ::= l | r

our core model

core
choreographies

C ::= 0 | η;C | if (p.∗ = q.∗) thenC1 elseC2

| def X = C2 inC1 | X

η ::= p.e → q | p→ q[l] l ::= l | r

inspiration memory models

similar to physical memory

memory cells as processes

our core model

core
choreographies

C ::= 0 | η;C | if (p.∗ = q.∗) thenC1 elseC2

| def X = C2 inC1 | X

η ::= p.e → q | p→ q[l] l ::= l | r

inspiration memory models

similar to physical memory

memory cells as processes

but. . . ! different from classic computation models

no centralized control

no self-change

our core model

core
choreographies

C ::= 0 | η;C | if (p.∗ = q.∗) thenC1 elseC2

| def X = C2 inC1 | X

η ::= p.e → q | p→ q[l] l ::= l | r

state a state of a core choreography is a mapping from the
set of process names to the set of values

semantics the transition semantics of CC is standard (using swap
relation)

our core model

core
choreographies

C ::= 0 | η;C | if (p.∗ = q.∗) thenC1 elseC2

| def X = C2 inC1 | X

η ::= p.e → q | p→ q[l] l ::= l | r

state a state of a core choreography is a mapping from the
set of process names to the set of values

semantics the transition semantics of CC is standard (using swap
relation)

theorem there exists a sound and faithful endpoint projection
from CC into a minimal process calculus

concepts and properties

implementation i/o-based notion of function implementation by a
choreography

concurrency notion of (full) parallel execution

theorem unprojectable choreographies can be amended
(by inferring label selections to add)

theorem label selections can be encoded as value communications

theorem CC is turing complete

theorem removing or weakening other primitives from CC breaks
Turing completeness

concepts and properties

implementation i/o-based notion of function implementation by a
choreography

concurrency notion of (full) parallel execution

theorem unprojectable choreographies can be amended
(by inferring label selections to add)

theorem label selections can be encoded as value communications

theorem CC is turing complete

theorem removing or weakening other primitives from CC breaks
Turing completeness

concepts and properties

implementation i/o-based notion of function implementation by a
choreography

concurrency notion of (full) parallel execution

theorem unprojectable choreographies can be amended
(by inferring label selections to add)

theorem label selections can be encoded as value communications

theorem CC is turing complete

theorem removing or weakening other primitives from CC breaks
Turing completeness

concepts and properties

implementation i/o-based notion of function implementation by a
choreography

concurrency notion of (full) parallel execution

theorem unprojectable choreographies can be amended
(by inferring label selections to add)

theorem label selections can be encoded as value communications

theorem CC is turing complete

theorem removing or weakening other primitives from CC breaks
Turing completeness

concepts and properties

implementation i/o-based notion of function implementation by a
choreography

concurrency notion of (full) parallel execution

theorem unprojectable choreographies can be amended
(by inferring label selections to add)

theorem label selections can be encoded as value communications

theorem CC is turing complete

theorem removing or weakening other primitives from CC breaks
Turing completeness

asynchrony

semantically states now include queues of incoming messages

one queue for each pair of distinct processes

two-step communication

also applies to label selection

 nicely matches asynchronous semantics at the process
level

syntactically auxiliary processes store messages in transit

requires ability to spawn processes

requires name mobility, graph of connections

allows for synchronous and asynchronous communication

theorem formal correspondence between both models

asynchrony

semantically states now include queues of incoming messages

one queue for each pair of distinct processes

two-step communication

also applies to label selection

 nicely matches asynchronous semantics at the process
level

syntactically auxiliary processes store messages in transit

requires ability to spawn processes

requires name mobility, graph of connections

allows for synchronous and asynchronous communication

theorem formal correspondence between both models

extraction

problem given a process implementation, can we extract a
choreography that describes it?

results algorithm for choreography extraction

based on abstract execution graphs

non-deterministic, but well-defined

able to deal with the asynchronous case

 to capture interesting asynchronous behaviours we
extend CC:

p . !q.∗; ?q | q . !p.∗; ?p

is extracted to (
p.∗ → q
q.∗ → p

)

extraction

problem given a process implementation, can we extract a
choreography that describes it?

results algorithm for choreography extraction

based on abstract execution graphs

non-deterministic, but well-defined

able to deal with the asynchronous case

 to capture interesting asynchronous behaviours we
extend CC:

p . !q.∗; ?q | q . !p.∗; ?p

is extracted to (
p.∗ → q
q.∗ → p

)

extraction

problem given a process implementation, can we extract a
choreography that describes it?

results algorithm for choreography extraction

based on abstract execution graphs

non-deterministic, but well-defined

able to deal with the asynchronous case

 to capture interesting asynchronous behaviours we
extend CC:

p . !q.∗; ?q | q . !p.∗; ?p

is extracted to (
p.∗ → q
q.∗ → p

)

choreographies in practice

goal write algorithms used in real applications

PC extends CC with top-level procedures, general
sequential composition

type system for data communications

synchronous and asynchronous semantics

limited higher-order features

examples in PC we can write:

parallel mergesort and quicksort

gaussian elimination with pipelined communication

parallel fast fourier transform

choreographies in practice

goal write algorithms used in real applications

PC extends CC with top-level procedures, general
sequential composition

type system for data communications

synchronous and asynchronous semantics

limited higher-order features

examples in PC we can write:

parallel mergesort and quicksort

gaussian elimination with pipelined communication

parallel fast fourier transform

thank you!

