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core choreographies (i/ii)

choreographies

global view of the system

directed communication (from alice to bob)

deadlock-free by design

compilable to process calculi

syntax C ::= 0 | η;C | if (p.∗ = q.∗) thenC1 elseC2

| def X = C2 inC1 | X

η ::= p.e → q | p→ q[l ]

l ::= labels (at least two distinct)

e ::= some set of expressions /2
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core choreographies (ii/ii)

semantics

v = e[σ(p)/∗]
p.e → q;C , σ → C , σ[q 7→ v ]

p→ q[l ];C , σ → C , σ

i = 1 if σ(p) = σ(q), i = 2 else

if (p.∗ = q.∗) thenC1 elseC2, σ → Ci , σ

C1, σ → C ′
1, σ

′

def X = C2 inC1, σ → def X = C2 inC ′
1, σ

′

C1 � C ′
1 C ′

1, σ → C ′
2, σ

′ C ′
2 � C2

C1, σ → C2, σ
′

(last rule says that
e.g. p.e → q; r.e ′ → s, σ → p.e → q, σ′)



stateful processes

target language a process calculus with the corresponding primitives:

send to/receive from a process

offer a choice to/select an option from a process

conditional

recursive definition

epp the endpoint projection of a choreography is a process
term that implements the corresponding choreography

example the choreography

p.e → q; p.e ′ → r

projects to

p . q!e; r!e ′ | q . p? | r . p?
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the problem

goal represent asynchronous communication in
choreographies

 at the process level, this is easy:

no synchronization on communications

processes have queues of incoming messages



the solution

syntax extend choreographies with runtime terms:

p.e →x •q •p →x q •p →v q

(and likewise for selections)

variables are used exactly twice (in matching pairs)

they store track messages in transit

•p →x q denotes a message that has not been sent yet

•p →v q denotes a message sent by p but not received
by q



semantics

formally we replace rules for communication with the following
ones:

p.e → q � p.e →x •q; •p →x q

v = e[σ(p)/∗]
p.e →x •q;C , σ → C [v/x ], σ

•p →v q;C , σ → C , σ[q 7→ v ]



an example

p.e → q; p.e ′ → r

� p.e →x •q; •p →x q; p.e ′ →y •r; •p →y r

projection we can still project to process calculus, but bisimulation
only holds for well-formed choreographies
(runtime terms are at the head)
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the problem

questions given a process network N:

is there a choreography C with the same behaviour
(bisimilarity)?

in the affirmative case, can we construct C from N?

answer no

undecidability results prevent perfect solution

. . . but can we solve this for a large enough set of N?

new goal given a process network N:

if we return yes, we can build C bisimilar to N

we return yes as much as possible
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our approach

idea symbolic execution of N
(abstracting from values, two cases in conditionals)
each “path” corresponds to a choreography

p . q!e; r!e ′ | q . p? | r . if ∗ = p. ∗ then 0 else q?

p.e→q

��
p . r!e ′ | q . 0 | r . if ∗ = p. ∗ then 0 else q?

p.e′→r.then

xx

p.e′→r.else

&&
p . 0 | q . 0 | r . 0 p . 0 | q . 0 | r . q?

extracted
choreography

p.e → q; if r.∗ = p. ∗ then 0 else 1
where 1 stands for deadlock (equivalent to 0)
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properties (finite case)

always terminates

identifies potential problems by 1

bisimilarity always holds!

non-deterministic (up to structural equivalence)

is sound and (almost) complete
(deadlocks may occur in dead code)



introducing recursion

the problem consider the following networks

p . def X = q!e;X inX
| q . def Y = p?;Y inY

p . def X = q!e;X in q!e;X
| q . def Y = p?;Y inY

p . def X = q!e; q!e;X inX
| q . def Y = p?;Y inY

p . def X = q!e; q!e;X in q!e;X
| q . def Y = p?; p?;Y inY

main intuition we do not care what the recursive definitions at the
processes say!

the idea do the same as before, but allow loops
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fairness and starvation

problems not all loops are equal. . .

p . def X = q!∗;X inX | q . def Y = p?;Y inY

| r . def Z = s!∗;Z inZ | s . def W = r?;W inW

solution annotate procedure calls

p . def X = q!∗;X inX | q . def Y = p?;Y inY

| r . s!∗ | s . r?

solution no finite behaviour in loops (except deadlocks)
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| r . def Z = q!∗;Z inZ

in general some networks are not extractable
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results

if symbolic execution does not generate a node from
which some process is always deadlocked, then N is
extractable

if C is extracted from N, then C and N are bisimilar
(C may contain deadlocks)

extraction terminates in time O
(
n × e2n/e

)
works for synchronous and asynchronous semantics

can be extended in the asynchronous case



conclusions

showed how to model asynchronous communication in
choreographies

construction holds in “every” model

showed how to extract choreographies from
implementations

complexity is lower bound for “all” languages



thank you!
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