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choreographic programming

context choreographies

high-level descriptions of communicating systems

directed communication (from alice to bob)

automatic compilation to process calculi

good theoretical properties

previously core choreographies

minimal primitives for turing completeness

captures the “essence” of choreographies

in this work inverting compilation

extraction from implementations
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core choreographies (i/ii)

syntax C ::= 0 | η;C | if (p.∗ = q.∗) thenC1 elseC2

| def X = C2 inC1 | X

η ::= p.e → q | p→ q[l ]

l ::= labels (at least two distinct)

e ::= some set of expressions /2



core choreographies (ii/ii)

semantics v = e[σ(p)/∗]
p.e → q;C , σ −→ C , σ[q 7→ v ]

p→ q[l ];C , σ −→ C , σ

i = 1 if σ(p) = σ(q), i = 2 else

if (p.∗ = q.∗) thenC1 elseC2, σ −→ Ci , σ

C1, σ −→ C ′1, σ
′

def X = C2 inC1, σ −→ def X = C2 inC ′1, σ
′

C1 � C ′1 C ′1, σ −→ C ′2, σ
′ C ′2 � C2

C1, σ −→ C2, σ
′

(last rule says that
e.g. p.e → q; r.e ′ → s, σ −→ p.e → q, σ′)



stateful processes

target language a process calculus with the corresponding primitives:

send to/receive from a process

offer a choice to/select an option from a process

conditional

recursive definition

epp the endpoint projection of a choreography is a process
term that implements the corresponding choreography

example the choreography

p.e → q; p.e ′ → r

projects to

p . q!e; r!e ′ | q . p? | r . p?
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the problem

questions given a process network N:

is there a choreography C with the same behaviour
(bisimilarity)?

in the affirmative case, can we construct C from N?

answer no

undecidability results prevent perfect solution

. . . but can we solve this for a large enough set of N?

new goal given a process network N:

if we return yes, we can build C bisimilar to N

we return yes as much as possible
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our approach

idea symbolic execution of N
(abstracting from values, two cases in conditionals)
each “path” corresponds to a choreography

p . q!e; r!e ′ | q . p? | r . if ∗ = p. ∗ then 0 else q?

p.e→q

��
p . r!e ′ | q . 0 | r . if ∗ = p. ∗ then 0 else q?

p.e′→r.then

xx

p.e′→r.else

&&
p . 0 | q . 0 | r . 0 p . 0 | q . 0 | r . q?

extracted
choreography

p.e → q; if r.∗ = p. ∗ then 0 else 1
where 1 stands for deadlock (equivalent to 0)
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properties (finite case)

always terminates

identifies potential problems by 1

bisimilarity always holds!

non-deterministic (up to structural equivalence)

is sound and (almost) complete
(deadlocks may occur in dead code)



introducing recursion

the problem consider the following networks

p . def X = q!∗;X inX
| q . def Y = p?;Y inY

p . def X = q!∗;X in q!∗;X
| q . def Y = p?;Y inY

p . def X = q!∗; q!∗;X inX
| q . def Y = p?;Y inY

p . def X = q!∗; q!∗;X in q!∗;X
| q . def Y = p?; p?;Y inY
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main intuition we do not care what the recursive definitions at the
processes say!

the idea do the same as before, but allow loops
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fairness and starvation

problems not all loops are equal. . .

p . def X = q!∗;X inX | q . def Y = p?;Y inY

| r . def Z = s!∗;Z inZ | s . def W = r?;W inW

p . X | q . Y | r . Z | s .W

p.∗→q

//

r.∗→s

oo

extracts to def X = p.∗ → q;X inX or def X = r.∗ → s;X inX
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problems not all loops are equal. . .

p . def X = q!∗;X inX | q . def Y = p?;Y inY

| r . def Z = q!∗;Z inZ

p . X ◦ | q . Y ◦ | r . Z ◦
p.∗→q // p . X • | q . Y • | r . Z ◦

p.∗→q

oo

oops not extractable (but r is deadlocked)

in general some networks are not extractable



results

if symbolic execution does not generate a node from
which some process is always deadlocked, then N is
extractable

if C is extracted from N, then C and N are bisimilar
(C may contain deadlocks)

extraction terminates in time O
(
n × e2n/e

)
works for synchronous semantics

can be adapted to/extended in the asynchronous case



conclusions & future directions

showed how to extract choreographies from
implementations

significant improvement in complexity wrt previous work

prototype implementation nearly ready

extension to process spawning in progress



thank you!
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