
procedural choreographic programming

procedural choreographic programming

lúıs cruz-filipe

(joint work with fabrizio montesi)

department of mathematics and computer science
university of southern denmark

forte 2017, neuchâtel, switzerland
june 20th, 2017

procedural choreographic programming

choreographic programming

outline

1 choreographic programming

2 procedural choreographies

3 choreographies in practice

4 conclusions

procedural choreographic programming

choreographic programming

choreographies

choreographies

a model for distributed computation based on “common practice”

used for modeling interactions between web services

high-level languages, alice-and-bob notation

good properties: message pairing, deadlock-freedom

projectable to adequate process calculi

different usages

choreographies as specifications (types)

choreographies as programs (our approach)

procedural choreographic programming

choreographic programming

examples (i/ii)

a simple example

alice.“hi”→ bob; bob.“hello”→ alice

all messages are correctly paired

synthetizable process implementation

!bob.“hi”; ?bob︸ ︷︷ ︸
alice

| ?alice; !alice.“hello”︸ ︷︷ ︸
bob

procedural choreographic programming

choreographic programming

examples (ii/ii)

non-interfering communications can swap

alice.“hi”→ bob; carol.“bye”→ dan; bob.“hello”→ alice
≡

carol.“bye”→ dan; alice.“hi”→ bob; bob.“hello”→ alice
≡

alice.“hi”→ bob; bob.“hello”→ alice; carol.“bye”→ dan

is implemented as

!bob.“hi”; ?bob︸ ︷︷ ︸
alice

| ?alice; !alice.“hello”︸ ︷︷ ︸
bob

| !dan.“bye”︸ ︷︷ ︸
carol

| ?carol︸ ︷︷ ︸
dan

procedural choreographic programming

choreographic programming

the world of choreographies

common features (present in most languages)

message passing/method selection

conditional and (tail) recursion

additional features (only in particular languages)

channel passing

process spawning

asynchrony

web services

. . .

 the target process calculi reflect these design choices

procedural choreographic programming

choreographic programming

the world of choreographies

common features (present in most languages)

message passing/method selection

conditional and (tail) recursion

additional features (only in particular languages)

channel passing

process spawning

asynchrony

web services

. . .

 the target process calculi reflect these design choices

procedural choreographic programming

choreographic programming

our motivation

goal

study foundational aspects of choreographies

identify minimal primitives required for particular
constructions

computational completeness and universality
asynchronous communication

 “bottom-up” approach, rather than “top-down”

this work

procedures in choreographies

arbitrary composition and recursion

runtime process spawning and name mobility

procedural choreographic programming

choreographic programming

our motivation

goal

study foundational aspects of choreographies

identify minimal primitives required for particular
constructions

computational completeness and universality
asynchronous communication

 “bottom-up” approach, rather than “top-down”

this work

procedures in choreographies

arbitrary composition and recursion

runtime process spawning and name mobility

procedural choreographic programming

procedural choreographies

outline

1 choreographic programming

2 procedural choreographies

3 choreographies in practice

4 conclusions

procedural choreographic programming

procedural choreographies

motivation

 we want to be able to write intuitive parallel algorithms

merge sort

given a list `

1 split ` into `1 and `2

2 compute mergesort(`1) and mergesort(`2)

3 merge mergesort(`1) and mergesort(`2)

step 2 should be done in two parallel computations

it is not clear how to do this with only tail recursion. . .

procedural choreographic programming

procedural choreographies

motivation

 we want to be able to write intuitive parallel algorithms

merge sort

given a list `

1 split ` into `1 and `2

2 compute mergesort(`1) and mergesort(`2)

3 merge mergesort(`1) and mergesort(`2)

step 2 should be done in two parallel computations

it is not clear how to do this with only tail recursion. . .

procedural choreographic programming

procedural choreographies

procedural choreographies

design options

typed processes

each process holds only one value (but might be a record)

communication allows for computation by both parties

parameterized global procedures

process spawning

name mobility (three-way communication)

procedural choreographic programming

procedural choreographies

syntax

procedural choreographies

a procedural choreography is a pair 〈D,C 〉

C ::= η;C | I ;C | 0 D ::= X(~q) = C ,D | ∅
η ::= p.e → q.f | p→ q[`] | p start qT | p : q↔ r

I ::= if p.e then C1 else C2 | X
〈
p̃T
〉
| 0

procedural choreographic programming

procedural choreographies

syntax

procedural choreographies

a procedural choreography is a pair 〈D,C 〉

C ::= η;C | I ;C | 0 D ::= X(~q) = C ,D | ∅
η ::= p.e → q.f | p→ q[`] | p start qT | p : q↔ r

I ::= if p.e then C1 else C2 | X
〈
p̃T
〉
| 0

D is a set of procedure definitions (choreographies)

C is a distinguished (“main”) choreography

procedural choreographic programming

procedural choreographies

syntax

procedural choreographies

a procedural choreography is a pair 〈D,C 〉

C ::= η;C | I ;C | 0 D ::= X(~q) = C ,D | ∅
η ::= p.e → q.f | p→ q[`] | p start qT | p : q↔ r

I ::= if p.e then C1 else C2 | X
〈
p̃T
〉
| 0

η are communication actions (values, label selection,
spawning, name communication)

I are instructions (conditionals, procedure calls) composed
sequentially

procedural choreographic programming

procedural choreographies

syntax

procedural choreographies

a procedural choreography is a pair 〈D,C 〉

C ::= η;C | I ;C | 0 D ::= X(~q) = C ,D | ∅
η ::= p.e → q.f | p→ q[`] | p start qT | p : q↔ r

I ::= if p.e then C1 else C2 | X
〈
p̃T
〉
| 0

in p.e → q.f , p evaluates expression e and sends its result to q

e may refer to the value stored at p

q applies function f to the value received and stores the result

f may refer to the value stored at q

procedural choreographic programming

procedural choreographies

syntax

procedural choreographies

a procedural choreography is a pair 〈D,C 〉

C ::= η;C | I ;C | 0 D ::= X(~q) = C ,D | ∅
η ::= p.e → q.f | p→ q[`] | p start qT | p : q↔ r

I ::= if p.e then C1 else C2 | X
〈
p̃T
〉
| 0

in p : q↔ r, p introduces processes q and r

afterwards, q and r can communicate directly

these actions are required for distributed implementations

procedural choreographic programming

procedural choreographies

semantics

components

transition semantics over triples 〈G,C , σ〉, parameterized by D
G is a graph of connections (who knows who)

σ is a (total) state function (what is stored at each process)

procedural choreographic programming

procedural choreographies

semantics

components

transition semantics over triples 〈G,C , σ〉, parameterized by D
G is a graph of connections (who knows who)

σ is a (total) state function (what is stored at each process)

p
G←→ q e ↓p v f (v) ↓q w

G , p.e → q.f ;C , σ →D G ,C , σ[q 7→ w]
bC|Come

possible errors

p and q do not know each other

e or f is not well-typed

v does not have the type expected by f

procedural choreographic programming

procedural choreographies

semantics

components

transition semantics over triples 〈G,C , σ〉, parameterized by D
G is a graph of connections (who knows who)

σ is a (total) state function (what is stored at each process)

G , p start qT ;C , σ →D G ∪ {p↔ q},C , σ[q 7→ ⊥T]
bC|Starte

procedural choreographic programming

procedural choreographies

semantics

components

transition semantics over triples 〈G,C , σ〉, parameterized by D
G is a graph of connections (who knows who)

σ is a (total) state function (what is stored at each process)

p
G←→ q p

G←→ r

G , p : q↔ r;C , σ →D G ∪ {q↔ r},C , σ bC|Telle

possible errors

p does not know q or r

procedural choreographic programming

procedural choreographies

semantics

components

transition semantics over triples 〈G,C , σ〉, parameterized by D
G is a graph of connections (who knows who)

σ is a (total) state function (what is stored at each process)

X (q̃T) = CX ∈ D

X
〈
p̃T
〉

;C �D CX [p̃/q̃] # C
bC|Unfolde

possible errors

procedure X is not defined

the types of the ps and qs do not match

procedural choreographic programming

procedural choreographies

semantics

components

transition semantics over triples 〈G,C , σ〉, parameterized by D
G is a graph of connections (who knows who)

σ is a (total) state function (what is stored at each process)

implicit parallelism

swapping relation extended to instructions (including procedure
calls)

examples to come

procedural choreographic programming

procedural choreographies

typing system

avoiding errors

well-typed choreographies are guaranteed never to encounter an
error (deadlock-freedom by design)

symbolic execution

over-approximation (analyzes potentially unreachable code)

judgements include connection “requirements” and
“guarantees” for procedure calls

type checking is decidable

type inference is decidable

typable choreographies may be unprojectable

procedural choreographic programming

procedural choreographies

typing system

avoiding errors

well-typed choreographies are guaranteed never to encounter an
error (deadlock-freedom by design)

symbolic execution

over-approximation (analyzes potentially unreachable code)

judgements include connection “requirements” and
“guarantees” for procedure calls

type checking is decidable

type inference is decidable

typable choreographies may be unprojectable

procedural choreographic programming

choreographies in practice

outline

1 choreographic programming

2 procedural choreographies

3 choreographies in practice

4 conclusions

procedural choreographic programming

choreographies in practice

merge sort revisited

choreography

MS(p) = if p.is small then 0

else p start q1,q2; p.split1 -> q1; p.split2 -> q2;

MS<q1>; MS<q2>; q1.* -> p; q2.* -> p.merge

projection

MS(p) = if is small then 0

else start (q1 . p?id; MS<q1>; p!*);

start (q2 . p?id; MS<q2>; p!*);

q1!split1; q2!split2; q1?id; q2?merge

procedural choreographic programming

choreographies in practice

merge sort revisited

choreography

MS<p>

projection

p . MS<p>

procedural choreographic programming

choreographies in practice

merge sort revisited

choreography

if p.is small then 0

else p start q1,q2; p.split1 -> q1; p.split2 -> q2;

MS<q1>; MS<q2>; q1.* -> p; q2.* -> p.merge

projection

p . if is small then 0

else start (q1 . p?id; MS<q1>; p!*);

start (q2 . p?id; MS<q2>; p!*);

q1!split1; q2!split2; q1?id; q2?merge

procedural choreographic programming

choreographies in practice

merge sort revisited

choreography

p start q1,q2; p.split1 -> q1; p.split2 -> q2;

MS<q1>; MS<q2>; q1.* -> p; q2.* -> p.merge

projection

p . start (q1 . p?id; MS<q1>; p!*);

start (q2 . p?id; MS<q2>; p!*);

q1!split1; q2!split2; q1?id; q2?merge

procedural choreographic programming

choreographies in practice

merge sort revisited

choreography

p.split1 -> q1; p.split2 -> q2;

MS<q1>; MS<q2>; q1.* -> p; q2.* -> p.merge

projection

p . q1!split1; q2!split2; q1?id; q2?merge

q1 . p?id; MS<q1>; p!*

q2 . p?id; MS<q2>; p!*

procedural choreographic programming

choreographies in practice

merge sort revisited

choreography

p.split1 -> q1 ; p.split2 -> q2;

MS<q1>; MS<q2>; q1.* -> p; q2.* -> p.merge

projection

p . q1!split1 ; q2!split2; q1?id; q2?merge

q1 . p?id ; MS<q1>; p!*

q2 . p?id; MS<q2>; p!*

procedural choreographic programming

choreographies in practice

merge sort revisited

choreography

p.split2 -> q2;

MS<q1>; MS<q2>; q1.* -> p; q2.* -> p.merge

projection

p . q2!split2; q1?id; q2?merge

q1 . MS<q1>; p!*

q2 . p?id; MS<q2>; p!*

procedural choreographic programming

choreographies in practice

merge sort revisited

choreography

p.split2 -> q2 ;

MS<q1>; MS<q2>; q1.* -> p; q2.* -> p.merge

projection

p . q2!split2 ; q1?id; q2?merge

q1 . MS<q1>; p!*

q2 . p?id ; MS<q2>; p!*

procedural choreographic programming

choreographies in practice

merge sort revisited

choreography

p.split2 -> q2 ;

MS<q1> ; MS<q2>; q1.* -> p; q2.* -> p.merge

projection

p . q2!split2 ; q1?id; q2?merge

q1 . MS<q1> ; p!*

q2 . p?id ; MS<q2>; p!*

procedural choreographic programming

choreographies in practice

merge sort revisited

choreography

p.split2 -> q2 ; if q1.is small then 0

else q1 start q11,q12; q1.split1 -> q11; q1.split2 -> q12;

MS<q11>; MS<q12>; q11.* -> q1; q12.* -> q1.merge

MS<q2>; q1.* -> p; q2.* -> p.merge

projection

p . q2!split2 ; q1?id; q2?merge

q1 . if is small then 0

else start (q11); start (q12); ...

p!*

q2 . p?id ; MS<q2>; p!*

procedural choreographic programming

choreographies in practice

merge sort revisited

choreography

p.split2 -> q2 ;

q1 start q11 , q12 ; q1.split1 -> q11; q1.split2 -> q12;

MS<q11>; MS<q12>; q11.* -> q1; q12.* -> q1.merge

MS<q2>; q1.* -> p; q2.* -> p.merge

projection

p . q2!split2 ; q1?id; q2?merge

q1 . start (q11) ; start (q12) ;

q11!split1; q12!split2; q11?id; q12?merge; p!*

q2 . p?id ; MS<q2>; p!*

procedural choreographic programming

choreographies in practice

merge sort revisited

choreography

p.split2 -> q2 ;

q1.split1 -> q11 ; q1.split2 -> q12 ;

MS<q11>; MS<q12>; q11.* -> q1; q12.* -> q1.merge

MS<q2>; q1.* -> p; q2.* -> p.merge

projection

p . q2!split2 ; q1?id; q2?merge

q1 . q11!split1 ; q12!split2

q11 . q1?id ; MS<q11>; q1!*

q12 . q1?id ; MS<q12>; q1!*

q2 . p?id ; MS<q2>; p!*

procedural choreographic programming

choreographies in practice

merge sort revisited

choreography

MS<q11>; MS<q12>; q11.* -> q1; q12.* -> q1.merge

MS<q2>; q1.* -> p; q2.* -> p.merge

projection

p . q1?id; q2?merge

q1 . q11?id; q12?merge; p!*

q11 . MS<q11>; q1!*

q12 . MS<q12>; q1!*

q2 . MS<q2>; p!*

procedural choreographic programming

choreographies in practice

merge sort revisited

choreography

MS<q11> ; MS<q12> ; q11.* -> q1; q12.* -> q1.merge

MS<q2> ; q1.* -> p; q2.* -> p.merge

projection

p . q1?id; q2?merge

q1 . q11?id; q12?merge; p!*

q11 . MS<q11> ; q1!*

q12 . MS<q12> ; q1!*

q2 . MS<q2> ; p!*

procedural choreographic programming

choreographies in practice

other examples

see our forte’16 paper

gaussian elimination

naive implementation gives pipelined communication and
computation

fast fourier transform

naive implementation using an orchestrator

 these examples use simple language extensions

procedural choreographic programming

conclusions

outline

1 choreographic programming

2 procedural choreographies

3 choreographies in practice

4 conclusions

procedural choreographic programming

conclusions

conclusions

a minimalist choreography language including key primitives

procedure definition
runtime process spawning
name mobility

type system (also) keeping track of connections between
processes

decidable type checking
decidable type inference

easy to extend for practical applications

not included: asynchronous semantics (see our ice’17 paper)

procedural choreographic programming

conclusions

thank you!

	choreographic programming
	procedural choreographies
	choreographies in practice
	conclusions

