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choreographies at a glance

overview of choreographies

choreographies

a model for distributed computation based on “common practice”
m used for modeling interactions between web services
m high-level languages, alice-and-bob notation

good properties: message pairing, deadlock-freedom

m no orchestrator

projectable to local views

different usages

m choreographies as specifications (types)

m choreographies as programs (executable)
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the world of choreographies

common features (present in most languages)

m message passing/method selection

m conditional and (tail) recursion

additional features (only in particular languages)

m channel passing
B process spawning
m asynchrony

m web services

~> the target language for projection reflects these design choices
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m study foundational aspects of choreographies

m identify minimal primitives required for particular constructions

m framework: choreographic programming (but...)

~ “bottom-up” approach, rather than “top-down”
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choreographies at a glance

our motiwation

m study foundational aspects of choreographies

m identify minimal primitives required for particular constructions

m framework: choreographic programming (but...)

~ “bottom-up” approach, rather than “top-down”

asynchronous semantics

m uniform approach, applicable to different models

m reuse out-of-order execution

~> hopefully cleaner than previous proposals
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asynchrony

what is asynchronous communication?

p—q

two-step communication
m “send” action for p
m “receive” action for q
m not simultaneous

sending is non-blocking
m p can send whenever it wishes
m g does not need to be ready to receive
m the message is stored “somewhere”

message order is preserved

all messages are eventually delivered
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asynchrony

a simple choreography model

C:=0|pe—qC \

semantics

¥ Synch
p.e > q; C,0 =5 C,o[q > V] yne
{p,q}#{r,s} :
wap

pe—qr.e »s=r.e —s;pe—q

C= Co Co,(T—)s Cé,cr’ Cé = C'
C,o—sCo

Struct

~ plus: =i u
lus: = is a congruence
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asynchrony

requirements for an asynchronous semantics

m two-step communication
mpe—>q—,—,0

m sending is non-blocking
m Cisn;...;nmpe—q C

mp & {n,..., 0}
m then C —, n1;...;0m t(q, v); C'

m message order is preserved

m all messages are eventually delivered
m — is a big-step semantics refined by —,
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a possibility for —,

capitalize on swap

Unfold

X

p.e > q=p.e > o8, > q

elpV

p-e X o;C,0—, Clv/x],o

Async|Send

v Async|Recv
oo~ q C,0—=,C,olqgrv]

{p}#{r,s}

X . ! = / .
p-€e > ®oq;r.e’ > s =r.e — s;p.e > o,

Swap’
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an example

C=pl—qgp2—qp3—r

p'lé.q;.péq;P'2l>.q; .pl)q,p:';i.r, .p—>r
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an example

C=pl—qp2—>qp3—r

Ep.léoq;opﬁq;pQ%oq;op 1>q;p.3i>or;op Sr
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an example

C=pl—qp2—>qp3—r
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asynchrony

an example

C=pl—qp2—>qp3—r
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asynchrony

an example

C=pl—qp2—>qp3—r
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~+ the two “receive” actions at q cannot be swapped
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sending is non-blocking
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all messages are eventually delivered
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asynchrony

results

desired properties

this relation satisfies the properties we identified earlier (see paper)
m two-step communication

sending is non-blocking

||
m message order is preserved
||

all messages are eventually delivered

furthermore

m formal correspondence with synchronous semantics

m projection theorem wrt an asynchronous process calculus
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asynchrony

modularity

m adaptable to other communication primitives

label selection
name mobility

m nice interplay with other choreography primitives

minimal choreographies (see paper)
procedural choreographies (see our forte'l7 paper + tr)
multiparty session types
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conclusions

conclusions

m asynchronous semantics for choreographic communication
m abstract(-ish) description of asynchrony (paper only)

m precise characterization in terms of synchronous
communication

m modular development, easily adaptable/extendable
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