on asynchrony and choreographies

on asynchrony and choreographies

luis cruz-filipe

(joint work with fabrizio montesi)

department of mathematics and computer science
university of southern denmark

ice 2017, neuchatel, switzerland
june 21st, 2017

on asynchrony and choreographies

choreographies at a glance

outline

choreographies at a glance

on asynchrony and choreographies

choreographies at a glance

overview of choreographies

choreographies

a model for distributed computation based on “common practice”
m used for modeling interactions between web services
m high-level languages, alice-and-bob notation

good properties: message pairing, deadlock-freedom

m no orchestrator

projectable to local views

different usages

m choreographies as specifications (types)

m choreographies as programs (executable)

on asynchrony and choreographies

choreographies at a glance

the world of choreographies

common features (present in most languages)

m message passing/method selection

m conditional and (tail) recursion

additional features (only in particular languages)

m channel passing
B process spawning
m asynchrony

m web services

~> the target language for projection reflects these design choices

on asynchrony and choreographies

choreographies at a glance

our motiwation

m study foundational aspects of choreographies

m identify minimal primitives required for particular constructions

m framework: choreographic programming (but...)

~ “bottom-up” approach, rather than “top-down”

on asynchrony and choreographies

choreographies at a glance

our motiwation

m study foundational aspects of choreographies

m identify minimal primitives required for particular constructions

m framework: choreographic programming (but...)

~ “bottom-up” approach, rather than “top-down”

asynchronous semantics

m uniform approach, applicable to different models

m reuse out-of-order execution

~> hopefully cleaner than previous proposals

on asynchrony and choreographies

asynchrony

outline

asynchrony

on asynchrony and choreographies

asynchrony

what is asynchronous communication?

m two-step communication

m “send” action for p
m “receive” action for q
m not simultaneous

on asynchrony and choreographies

asynchrony

what is asynchronous communication?

p—q

m two-step communication
m “send” action for p
m “receive” action for q
m not simultaneous
m sending is non-blocking
m p can send whenever it wishes
m g does not need to be ready to receive
m the message is stored “somewhere”

on asynchrony and choreographies

asynchrony

what is asynchronous communication?

p—q

m two-step communication
m “send” action for p
m “receive” action for q
m not simultaneous
m sending is non-blocking
m p can send whenever it wishes
m g does not need to be ready to receive
m the message is stored “somewhere”

m message order is preserved

on asynchrony and choreographies

asynchrony

what is asynchronous communication?

p—q

two-step communication
m “send” action for p
m “receive” action for q
m not simultaneous

sending is non-blocking
m p can send whenever it wishes
m g does not need to be ready to receive
m the message is stored “somewhere”

message order is preserved

all messages are eventually delivered

on asynchrony and choreographies

asynchrony

a simple choreography model

C:=0|pe—qC l

on asynchrony and choreographies

asynchrony

a simple choreography model

C:=0|pe—qC \

semantics

¥ Synch
p.e > q; C,0 =5 C,o[q > V] yne
{p,q}#{r,s} :
wap

pe—qr.e »s=r.e —s;pe—q

C= Co Co,(T—)s Cé,cr’ Cé = C'
C,o—sCo

Struct

~ plus: =i u
lus: = is a congruence

on asynchrony and choreographies

asynchrony

requirements for an asynchronous semantics

m two-step communication
mpe—>q—,—,0

on asynchrony and choreographies

asynchrony

requirements for an asynchronous semantics

m two-step communication
mpe—>q—,—,0

m sending is non-blocking
m Cisn;...;nmpe—q C

mp & {n,..., 0}
m then C —, n1;...;0m t(q, v); C'

on asynchrony and choreographies

asynchrony

requirements for an asynchronous semantics

m two-step communication
mpe—>q—,—,0

m sending is non-blocking
m Cisn;...;nmpe—q C

mp & {n,..., 0}
m then C —, n1;...;0m t(q, v); C'

m message order is preserved

m all messages are eventually delivered
m — is a big-step semantics refined by —,

on asynchrony and choreographies

asynchrony

a possibility for —,

capitalize on swap

Unfold

X

p.e > q=p.e > o8, > q

elpV

p-e X o;C,0—, Clv/x],o

Async|Send

v Async|Recv
oo~ q C,0—=,C,olqgrv]

{p}#{r,s}

X . ! = / .
p-€e > ®oq;r.e’ > s =r.e — s;p.e > o,

Swap’

on asynchrony and choreographies

asynchrony

an example

C=pl—qgp2—qp3—r

on asynchrony and choreographies

asynchrony

an example

C=pl—qp2—>qp3—r

Ep.léoq;opﬁq;pQ%oq;op 1>q;p.3i>or;op Sr

on asynchrony and choreographies

asynchrony

an example

C=pl—qgp2—qp3—r

= p.l1>oq;opi>q;p.2l>oq;opl>q;p.3i>or;opir

on asynchrony and choreographies

asynchrony

an example

C=pl—qgp2—qp3—r

p'lé.q;.péq;P'2l>.q; .pl)q,p:';i.r, .p—>r

on asynchrony and choreographies

asynchrony

an example

C=pl—qp2—>qp3—r

w
In
°
",
°
e
In
=

EP]' é .q;.p 4 q,p2 l) .q; .P 1} q; p-

1. Y . Yo .. z . z
—a 8, = q;p.2 = e 8, = q;p.3 e, e, ST

on asynchrony and choreographies

asynchrony

an example

C=pl—qp2—>qp3—r
Ep.léoq;opﬁq;pQ%oq;op 1>q;p.3i>or;op Sr

1
—a % —q; p.21>oq;opl>q;p.3i>or; opir

on asynchrony and choreographies

asynchrony

an example

C=pl—qp2—>qp3—r

Ep.léoq;opﬁq;pQ%oq;op 1>q;p.3i>or;op Sr

P4 V4

—a Opi>q;p.21>oq;op 1>q;p.3—>or;op—>r

1 2 z . z
—a®, > Qq; 8, —> q;p.3 > e, 0, T

on asynchrony and choreographies

asynchrony

an example

C=pl—qp2—>qp3—r

w
In
°
",
°
e
In
=

=p.l N LI i)q;p.2l> LI 1>q;p.
—a opi>q;p.2i>oq;oP l>q;p.3i>or;opi>r

1 . 2 . 32 . z
—a op—>q,op—>q, Po>-—70; &, T

on asynchrony and choreographies

asynchrony

an example

C=pl—qp2—>qp3—r

w
In
°
",
°
e
In
=

=p.l N LI N q;p-2 X LI A q; p-

1. Y, . Yo .. z . z
—a @ — qQ;P.2 > ey, 8, = qQ;p.3 e 0, ST

1 2 z . z
—a0p —>Qq; 0, > QP33 e 0, T

1 2 3
—>aop—>q;op—>q;op—>r

on asynchrony and choreographies

asynchrony

an example

C=pl—qp2—>qp3—r
Ep.léoq;opﬁq;pQ%oq;op 1>q;p.3i>or;op Sr

1 Y Y z z
—a @ — qQ;P.2 > ey, 8, = qQ;p.3 e 0, ST
1 2 z z
—a®, > Qq; 8, —> q;p.3 > e, 0, T

1
—a .p—)q;.p—>q; .P—)I'

on asynchrony and choreographies

asynchrony

an example

C=pl—qp2—>qp3—r

on asynchrony and choreographies

asynchrony

an example

C=pl—qp2—>qp3—r

w
In
°
",
°
e
In
=

=p.l N LI N q;p-2 X LI A q; p-

In
In
H

1
—3 op—>q;p.21>oq; [l>q;p.3
1 2 z z
—a®, > Qq; 8, —> q;p.3 > e, 0, T
1 2 3
2@ > Q; 8, —> ;8 > T
1 2
e

~+ the two “receive” actions at q cannot be swapped

on asynchrony and choreographies

asynchrony

results

desired properties

this relation satisfies the properties we identified earlier (see paper)
m two-step communication

sending is non-blocking

||
m message order is preserved
||

all messages are eventually delivered

on asynchrony and choreographies

asynchrony

results

desired properties

this relation satisfies the properties we identified earlier (see paper)
m two-step communication

sending is non-blocking

||
m message order is preserved
||

all messages are eventually delivered

furthermore

m formal correspondence with synchronous semantics

m projection theorem wrt an asynchronous process calculus

on asynchrony and choreographies

asynchrony

modularity

m adaptable to other communication primitives

m label selection
m name mobility

on asynchrony and choreographies

asynchrony

modularity

m adaptable to other communication primitives

label selection
name mobility

m nice interplay with other choreography primitives

minimal choreographies (see paper)
procedural choreographies (see our forte'l7 paper + tr)
multiparty session types

on asynchrony and choreographies

conclusions

outline

conclusions

on asynchrony and choreographies

conclusions

conclusions

m asynchronous semantics for choreographic communication
m abstract(-ish) description of asynchrony (paper only)

m precise characterization in terms of synchronous
communication

m modular development, easily adaptable/extendable

on asynchrony and choreographies

thank you!

	choreographies at a glance
	asynchrony
	conclusions

