some thoughts on machine-assisted proofs

some thoughts on machine-assisted proofs

luis cruz-filipe

department of mathematics and computer science
university of southern denmark

international congress of mathematicians
rio de janeiro, brazil
august 7th, 2018



some thoughts on machine-assisted proofs

a not-so-new trend in mathematics

Appel, Haken and Koch (1977)
traditionally considered “the” birth of the field

more than 10 years before. . .

Theorem 5. S(7) = 16.

Proof. This theorem was proved by exhaustive enumeration on a CDC
G-21 computer at Carnegie Institute of Technology in 1966. The program
was written by Mr. Richard Grove, and its running time was approximately

(Floyd & Knuth, 1973)




some thoughts on machine-assisted proofs

the present day

software and hardware verification

m critical systems (testing is not enough)
m lots of mechanical, “boring” proofs with lots of (simple) cases

m often largely/completely automatic

mathematical results

m because we can

m proofs in “mathematical style”, typically interactive

m ‘“less elegant” proofs by encoding, often automatic




some thoughts on machine-assisted proofs

two styles of proving

ad hoc programs

highly specialized programs check that some property holds
(cf. early examples)

m the program must be correct

m not always easy to trust

theorem provers

general-purpose programs that can construct/check proofs in a particular logic
m we still need to trust the program (but...)

m the encoding in the logic must be correct




some thoughts on machine-assisted proofs

an example

optimal sorting networks

same domain as Floyd and Knuth, proving 5(9) = 25
m ad-hoc Prolog program, following “good” practices
m independently verified by encoding in propositional logic

m algorithm rerun by a provenly correct program

why so much work?

m can we trust Prolog?
m can we trust sat-solvers (more on that later)?

m is the sat encoding correct? (it wasn't — several times)

m certified programs are typically MUCH slower




some thoughts on machine-assisted proofs

another example

sat solving

general problem: is a given propositional formula satisfiable?
m very efficient solvers exist, able to deal with gigantic formulas
m usable in practice to solve other problems by encoding

m nearly impossible to understand the code

V.

recent trend

independently check a trace of the sat solver's “reasoning”

m checking a proof is much easier than finding it
m possible to do efficiently
m state-of-the-art traces of around 400 TB




