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motivation (i/ii)

programming paradigm for concurrent systems, based
on “alice-to-bob” communication

high-level languages
automatic compilation to process calculi

deadlock-freedom by design

too many (published) proofs read “straightforward by
structural induction”

serious errors found recently in process calculi

problems getting articles accepted
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hopefully speed-up the refereeing process
dispell doubts on correctness of proofs and methods

turing-completeness of a core choreography calculus
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implementation . .
choreography <———————— partial recursive

language functions (Kleene)

compilation

process
calculus

challenges
m dependent types all over the place

m induction hypotheses are too weak
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composition

second attempt

depth function

a concrete example

given g : N" — N and 1‘1,;. . NF 5 N, their
composition is h = C(g, f) : N — N with

h(x1, ..., xk) = & (Fa(X1y oy Xk)s ooy Fa(X1y - oy Xk))

if all subterms are defined

dependent type MM,.n.PR(n) of partial recursive
functions with arity n, and

Composition : M, . PR(n) = Vec,(PR(k)) = PR(k)

more faithful, but more complex
problems with induction

induction on the depth of the proof that f : PR(n)

depth : M, PR(n) - N



status

turing completeness of choreographies

mapping {{-}} from partial recursive functions to
choreographies

notion of function computed by a choreography

soundness: {{f}} computes f

formalized definitions, soundness proved only for
concrete examples
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challenges

~~ structural induction (again)

relations on  reduction C,o — C' o’ (one-step execution) and
choreographies  structural precongruence C < C’ (out-of-order
execution)

problematic
rules

C Sn C/ C/ Sk Cl/
C §n+k C//
G <k ¢ Cl,01 —n G, 00 G <mG
C1,01 = kinem C2,02

our solution  induction on the number of steps in the derivation

~ soundness, but also canonical forms for reductions



conclusions

work in progress

main definitions in place

similar problems in different places, uniform solutions
better understanding of the theory

better definitions?



thank you!



