
formalizing a turing-complete
choreography calculus in coq

lúıs cruz-filipe

(joint work with fabrizio montesi & marco peressotti)

department of mathematics and computer science
university of southern denmark

types meeting
june 13th, 2019



motivation (i/ii)

choreographic
programming

programming paradigm for concurrent systems, based
on “alice-to-bob” communication

high-level languages

automatic compilation to process calculi

deadlock-freedom by design

theoretical
issues

too many (published) proofs read “straightforward by
structural induction”

serious errors found recently in process calculi

problems getting articles accepted



motivation (i/ii)

choreographic
programming

programming paradigm for concurrent systems, based
on “alice-to-bob” communication

high-level languages

automatic compilation to process calculi

deadlock-freedom by design

theoretical
issues

too many (published) proofs read “straightforward by
structural induction”

serious errors found recently in process calculi

problems getting articles accepted



motivation (ii/ii)

goal formalize a research article (in coq)

hopefully speed-up the refereeing process

dispell doubts on correctness of proofs and methods

main result turing-completeness of a core choreography calculus



motivation (ii/ii)

goal formalize a research article (in coq)

hopefully speed-up the refereeing process

dispell doubts on correctness of proofs and methods

main result turing-completeness of a core choreography calculus



general picture

choreography
language

compilation

��

partial recursive
functions (Kleene)

implementation
pp

process
calculus

challenges

dependent types all over the place

induction hypotheses are too weak



general picture

choreography
language

compilation

��

partial recursive
functions (Kleene)

implementation
pp

process
calculus

challenges

dependent types all over the place

induction hypotheses are too weak



a concrete example

composition given g : Nn → N and f1, . . . , fn : Nk → N, their
composition is h = C (g , ~f ) : Nk → N with

h(x1, . . . , xk) = g (fn(x1, . . . , xk), . . . , fn(x1, . . . , xk))

if all subterms are defined

second attempt dependent type Πn:N.PR(n) of partial recursive
functions with arity n, and

Composition : Πn,k .PR(n)→ Vecn(PR(k))→ PR(k)

more faithful, but more complex
problems with induction

depth function induction on the depth of the proof that f : PR(n)

depth : Πn.PR(n)→ N



a concrete example

composition given g : Nn → N and f1, . . . , fn : Nk → N, their
composition is h = C (g , ~f ) : Nk → N with

h(x1, . . . , xk) = g (fn(x1, . . . , xk), . . . , fn(x1, . . . , xk))

if all subterms are defined

first attempt type PR of partial recursive functions, with

Composition : PR → list(PR)→ PR

and a function arity : PR → N

second attempt dependent type Πn:N.PR(n) of partial recursive
functions with arity n, and

Composition : Πn,k .PR(n)→ Vecn(PR(k))→ PR(k)

more faithful, but more complex
problems with induction

depth function induction on the depth of the proof that f : PR(n)

depth : Πn.PR(n)→ N



a concrete example

composition given g : Nn → N and f1, . . . , fn : Nk → N, their
composition is h = C (g , ~f ) : Nk → N with

h(x1, . . . , xk) = g (fn(x1, . . . , xk), . . . , fn(x1, . . . , xk))

if all subterms are defined

first attempt type PR of partial recursive functions, with

Composition : PR → list(PR)→ PR

and a function arity : PR → N
 unclean. . .

second attempt dependent type Πn:N.PR(n) of partial recursive
functions with arity n, and

Composition : Πn,k .PR(n)→ Vecn(PR(k))→ PR(k)

more faithful, but more complex
problems with induction

depth function induction on the depth of the proof that f : PR(n)

depth : Πn.PR(n)→ N



a concrete example

composition given g : Nn → N and f1, . . . , fn : Nk → N, their
composition is h = C (g , ~f ) : Nk → N with

h(x1, . . . , xk) = g (fn(x1, . . . , xk), . . . , fn(x1, . . . , xk))

if all subterms are defined

second attempt dependent type Πn:N.PR(n) of partial recursive
functions with arity n, and

Composition : Πn,k .PR(n)→ Vecn(PR(k))→ PR(k)

more faithful, but more complex
problems with induction

depth function induction on the depth of the proof that f : PR(n)

depth : Πn.PR(n)→ N



a concrete example

composition given g : Nn → N and f1, . . . , fn : Nk → N, their
composition is h = C (g , ~f ) : Nk → N with

h(x1, . . . , xk) = g (fn(x1, . . . , xk), . . . , fn(x1, . . . , xk))

if all subterms are defined

second attempt dependent type Πn:N.PR(n) of partial recursive
functions with arity n, and

Composition : Πn,k .PR(n)→ Vecn(PR(k))→ PR(k)

more faithful, but more complex
problems with induction

depth function induction on the depth of the proof that f : PR(n)

depth : Πn.PR(n)→ N



a concrete example

composition given g : Nn → N and f1, . . . , fn : Nk → N, their
composition is h = C (g , ~f ) : Nk → N with

h(x1, . . . , xk) = g (fn(x1, . . . , xk), . . . , fn(x1, . . . , xk))

if all subterms are defined

second attempt dependent type Πn:N.PR(n) of partial recursive
functions with arity n, and

Composition : Πn,k .PR(n)→ Vecn(PR(k))→ PR(k)

more faithful, but more complex
problems with induction

depth function induction on the depth of the proof that f : PR(n)

depth : Πn.PR(n)→ N



turing completeness of choreographies

mapping {{·}} from partial recursive functions to
choreographies

notion of function computed by a choreography

soundness: {{f }} computes f

status formalized definitions, soundness proved only for
concrete examples



challenges

 structural induction (again)

relations on
choreographies

reduction C , σ → C ′, σ′ (one-step execution) and
structural precongruence C ≤ C ′ (out-of-order
execution)

problematic
rules

C ≤ C ′ C ′ ≤ C ′′

C ≤ C ′′

C1 ≤ C ′
1 C ′

1, σ1 → C ′
2, σ2 C ′

2 ≤ C2

C1, σ1 → C2, σ2

our solution induction on the number of steps in the derivation

 soundness, but also canonical forms for reductions



challenges

 structural induction (again)

relations on
choreographies

reduction C , σ → C ′, σ′ (one-step execution) and
structural precongruence C ≤ C ′ (out-of-order
execution)

problematic
rules

C ≤ C ′ C ′ ≤ C ′′

C ≤ C ′′

C1 ≤ C ′
1 C ′

1, σ1 → C ′
2, σ2 C ′

2 ≤ C2

C1, σ1 → C2, σ2

our solution induction on the number of steps in the derivation

 soundness, but also canonical forms for reductions



challenges

 structural induction (again)

relations on
choreographies

reduction C , σ → C ′, σ′ (one-step execution) and
structural precongruence C ≤ C ′ (out-of-order
execution)

problematic
rules

C ≤ C ′ C ′ ≤ C ′′

C ≤ C ′′

C1 ≤ C ′
1 C ′

1, σ1 → C ′
2, σ2 C ′

2 ≤ C2

C1, σ1 → C2, σ2

our solution induction on the number of steps in the derivation

 soundness, but also canonical forms for reductions



challenges

 structural induction (again)

relations on
choreographies

reduction C , σ → C ′, σ′ (one-step execution) and
structural precongruence C ≤ C ′ (out-of-order
execution)

problematic
rules

C ≤n C ′ C ′ ≤k C ′′

C ≤n+k C ′′

C1 ≤k C ′
1 C ′

1, σ1 →n C ′
2, σ2 C ′

2 ≤m C2

C1, σ1 →k+n+m C2, σ2

our solution induction on the number of steps in the derivation

 soundness, but also canonical forms for reductions



challenges

 structural induction (again)

relations on
choreographies

reduction C , σ → C ′, σ′ (one-step execution) and
structural precongruence C ≤ C ′ (out-of-order
execution)

problematic
rules

C ≤n C ′ C ′ ≤k C ′′

C ≤n+k C ′′

C1 ≤k C ′
1 C ′

1, σ1 →n C ′
2, σ2 C ′

2 ≤m C2

C1, σ1 →k+n+m C2, σ2

our solution induction on the number of steps in the derivation

 soundness, but also canonical forms for reductions



conclusions

work in progress

main definitions in place

similar problems in different places, uniform solutions

better understanding of the theory

better definitions?



thank you!


