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lúıs cruz-filipe

(joint work with fabrizio montesi & marco peressotti)

department of mathematics and computer science
university of southern denmark

types meeting
june 13th, 2019



motivation (i/ii)

choreographic
programming

programming paradigm for concurrent systems, based
on “alice-to-bob” communication

high-level languages

automatic compilation to process calculi

deadlock-freedom by design

theoretical
issues

too many (published) proofs read “straightforward by
structural induction”

serious errors found recently in process calculi

problems getting articles accepted



motivation (i/ii)

choreographic
programming

programming paradigm for concurrent systems, based
on “alice-to-bob” communication

high-level languages

automatic compilation to process calculi

deadlock-freedom by design

theoretical
issues

too many (published) proofs read “straightforward by
structural induction”

serious errors found recently in process calculi

problems getting articles accepted



motivation (ii/ii)

goal formalize a research article (in coq)

hopefully speed-up the refereeing process

dispell doubts on correctness of proofs and methods

main result turing-completeness of a core choreography calculus



motivation (ii/ii)

goal formalize a research article (in coq)

hopefully speed-up the refereeing process

dispell doubts on correctness of proofs and methods

main result turing-completeness of a core choreography calculus



general picture

choreography
language

compilation

��

partial recursive
functions (Kleene)

implementation
pp

process
calculus

challenges

dependent types all over the place

induction hypotheses are too weak



general picture

choreography
language

compilation

��

partial recursive
functions (Kleene)

implementation
pp

process
calculus

challenges

dependent types all over the place

induction hypotheses are too weak



a concrete example

composition given g : Nn → N and f1, . . . , fn : Nk → N, their
composition is h = C (g , ~f ) : Nk → N with

h(x1, . . . , xk) = g (fn(x1, . . . , xk), . . . , fn(x1, . . . , xk))

if all subterms are defined

second attempt dependent type Πn:N.PR(n) of partial recursive
functions with arity n, and

Composition : Πn,k .PR(n)→ Vecn(PR(k))→ PR(k)

more faithful, but more complex
problems with induction

depth function induction on the depth of the proof that f : PR(n)

depth : Πn.PR(n)→ N
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turing completeness of choreographies

mapping {{·}} from partial recursive functions to
choreographies

notion of function computed by a choreography

soundness: {{f }} computes f

status formalized definitions, soundness proved only for
concrete examples



challenges

 structural induction (again)

relations on
choreographies

reduction C , σ → C ′, σ′ (one-step execution) and
structural precongruence C ≤ C ′ (out-of-order
execution)

problematic
rules

C ≤ C ′ C ′ ≤ C ′′

C ≤ C ′′

C1 ≤ C ′
1 C ′

1, σ1 → C ′
2, σ2 C ′

2 ≤ C2

C1, σ1 → C2, σ2

our solution induction on the number of steps in the derivation

 soundness, but also canonical forms for reductions
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conclusions

work in progress

main definitions in place

similar problems in different places, uniform solutions

better understanding of the theory

better definitions?



thank you!


