choreography extraction
000000000000

choreography extraction

luis cruz-filipe
(joint work with kim skak larsen, fabrizio montesi & larisa
safina)

department of mathematics and computer science
university of southern denmark

cl seminar
november 13th, 2020

choreography extraction
000000000000

the goal

extract a choreography from an implementation of a distributed
system (if possible)

unsatisfactory state-of-the-art

@ too complex (encode, apply algorithm, reencode, optimize,
reencode, recompute, get unreadable result)

@ too complex (super-factorial)

e kind of ad-hoc (non-standard languages)

choreography extraction
000000000000

the goal

extract a choreography from an implementation of a distributed
system (if possible)

unsatisfactory state-of-the-art

@ too complex (encode, apply algorithm, reencode, optimize,
reencode, recompute, get unreadable result)

@ too complex (super-factorial)

e kind of ad-hoc (non-standard languages)

our privileged position

@ nice languages for choreographies and processes

@ intuitive description of what extraction should be
(some kind of adjoint to epp)

e cool idea (symbolic execution)

choreography extraction
00@000000000

extraction by example (i/iii)

p>qgle|g> p?x|r>sle |spr?y

choreography extraction
00@000000000

extraction by example (i/1ii)

p>qle|qp p?x|r>sle’|spr?y

P.eM&y

r>sle’|se r?y p>qle|qr p?x

r.e&\ %-X

0

choreography extraction
00@000000000

extraction by example (i/1ii)

p>qle|qp p?x|r>sle’|spr?y

P.eM&y

r>sle’|se r?y p>qle|qr p?x
r.e&\ %.x
0

extracted choreography: p.e => q.x;r.e’ > s.y or
r.e’ >s.y;p.e > q.x

choreography extraction
000800000000

extraction by example (ii/iii)

pr>ifetheng®L;q!lelseq® R;q?x|q> p&{L: p?y, R:p!2}

choreography extraction
000800000000

extraction by example (ii/iii)

p > if ethenq @ L; q'lelseq@R q?x|qp> p&{L: p?y, R:pl2}

p.e:then

p.e:else

p>q®L;qll[qr p&{L:p?y, R:p!2}

p->q[L] P> qDR;q?x|q> p&{L:p?y, R:p!2}
¢p->q[R]
p>qll|qrp?y p>q?x|qp>p!2

.1 ->q. 2 > p.
P q.y pD0|q>0q p-X

choreography extraction
000800000000

extraction by example (ii/iii)

p > if ethenq @ L; q'lelseq@R q?x|qp> p&{L: p?y, R:pl2}

p.e:then

p.e:else

p>q®L;qll[qr p&{L:p?y, R:p!2}

p->q[L] P> qDR;q?x|q> p&{L:p?y, R:p!2}
¢p->q[R]
p>qll|qrp?y p>q?x|qp>p!2

.1 ->q. 2 > p.
P q.y pD0|q>0q p-X

extracted choreography:
if p.ethen (p —> q[L]; p.1 => q.y) else (p > q[R]; 9.2 => p.x)

choreography extraction
000080000000

extraction by example (iii/iii)

p>qll;r!2|q> p?x;r!3|rpif ethenp?yelseq?y

choreography extraction
000080000000

extraction by example (iii/iii)

p>qll;rl2|q> p?x;rl3|r> if ethenp?yelseq?y

r.e:else

p>qll;rl2|qe p?x;rl3|re> p?y p>qll;rl2|qp p?x;rl3|r>q?y
p.1 > q.x
pl=>ax| pb>rl2|qerl3|r>ifethenp?yelseq?y |p1->ax

r.e:then r.e:else

p>rl2|qrrl3|r> ply p>rl2|qrrl3|r>q?y

p.2 >ry q.3>ry
p>0|q>rl3|r>0 p>rl2|qr0]r>0

choreography extraction
000080000000

extraction by example (iii/iii)

p>qll;rl2|q> p?x;rl3|r> if ethenp?yelseq?y

r.e:else

p>qll;rl2|qe p?x;rl3|re> p?y p>qll;rl2|qp p?x;rl3|r>q?y
p.1 > q.x

pl->ax| pb>rl2|q>rl3|r>ifethenp?yelseq?y |p.1->ax

r.e:then r.e:else

p>rl2|qrrl3|r> ply p>rl2|qrrl3|r>q?y
p.2 >ry q.3->ry
p>0|q>rl3|r>0 p>rl2|qr0]r>0

all paths in the graph end in a deadlocked state, so the network
cannot be extracted to a choreography

choreography extraction
000008000000

properties (finite case)

@ termination

@ soundness (the extracted choreography is bisimilar to the
network)

e completeness (deadlock-free networks are extractable)

o efficient-ish (polynomial in the size of the network, graph size
linear in the size of the extracted choreography)

choreography extraction
000000800000

dealing with recursion

choreography extraction
000000080000

properties (general case)

the good ones

@ termination

@ soundness (the extracted choreography is bisimilar to the
network)

choreography extraction
000000080000

properties (general case)

the good ones

@ termination

@ soundness (the extracted choreography is bisimilar to the
network)

<

the not-so-good ones

@ incompleteness (no can do: deadlock-freedom is undecidable)

@ horrible complexity (graph size exponential in the size of the
extracted choreography)

(still better than previous state-of-the-art)

\

choreography extraction
00000000e000

implementation

creative solutions

@ list of bad nodes

choice paths

some global variables
parallelization
extraction strategies

livelocks

three-valued logic for clever backtracking

choreography extraction
000000000800

testing

methodology

@ examples from state-of-the-art
@ reverse epp
@ network fuzzer

@ network scrambler

choreography extraction
000000000800

testing

methodology

@ examples from state-of-the-art
@ reverse epp
@ network fuzzer

@ network scrambler

~> it kind of actually works :-)

choreography extraction
000000000080

status and future work

@ journal article in progress, expected submission in the winter

@ generalize with process spawning

choreography extraction
00000000000 e

thank you!

	choreography extraction

