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the goal

extract a choreography from an implementation of a distributed
system (if possible)

unsatisfactory state-of-the-art

@ too complex (encode, apply algorithm, reencode, optimize,
reencode, recompute, get unreadable result)

@ too complex (super-factorial)

e kind of ad-hoc (non-standard languages)
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the goal

extract a choreography from an implementation of a distributed
system (if possible)

unsatisfactory state-of-the-art

@ too complex (encode, apply algorithm, reencode, optimize,
reencode, recompute, get unreadable result)

@ too complex (super-factorial)

e kind of ad-hoc (non-standard languages)

our privileged position

@ nice languages for choreographies and processes

@ intuitive description of what extraction should be
(some kind of adjoint to epp)

e cool idea (symbolic execution)
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extraction by example (i/iii)

p>qgle|g> p?x|r>sle |spr?y
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extraction by example (i/1ii)

p>qle|qp p?x|r>sle’|spr?y

P.eM&y

r>sle’|se r?y p>qle|qr p?x

r.e&\ %-X

0
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extraction by example (i/1ii)

p>qle|qp p?x|r>sle’|spr?y

P.eM&y

r>sle’|se r?y p>qle|qr p?x
r.e&\ %.x
0

extracted choreography: p.e => q.x;r.e’ > s.y or
r.e’ >s.y;p.e > q.x
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extraction by example (ii/iii)

pr>ifetheng®L;q!lelseq® R;q?x|q> p&{L: p?y, R:p!2}
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extraction by example (ii/iii)

p > if ethenq @ L; q'lelseq@R q?x|qp> p&{L: p?y, R:pl2}

p.e:then

p.e:else

p>q®L;qll[qr p&{L:p?y, R:p!2}

p->q[L] P> qDR;q?x|q> p&{L:p?y, R:p!2}
¢p->q[R]
p>qll|qrp?y p>q?x|qp>p!2

.1 ->q. 2 > p.
P q.y pD0|q>0q p-X
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extraction by example (ii/iii)

p > if ethenq @ L; q'lelseq@R q?x|qp> p&{L: p?y, R:pl2}

p.e:then

p.e:else

p>q®L;qll[qr p&{L:p?y, R:p!2}

p->q[L] P> qDR;q?x|q> p&{L:p?y, R:p!2}
¢p->q[R]
p>qll|qrp?y p>q?x|qp>p!2

.1 ->q. 2 > p.
P q.y pD0|q>0q p-X

extracted choreography:
if p.ethen (p —> q[L]; p.1 => q.y) else (p > q[R]; 9.2 => p.x)
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extraction by example (iii/iii)

p>qll;r!2|q> p?x;r!3|rpif ethenp?yelseq?y
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extraction by example (iii/iii)

p>qll;rl2|q> p?x;rl3|r> if ethenp?yelseq?y

r.e:else

p>qll;rl2|qe p?x;rl3|re> p?y p>qll;rl2|qp p?x;rl3|r>q?y
p.1 > q.x
pl=>ax| pb>rl2|qerl3|r>ifethenp?yelseq?y  |p1->ax

r.e:then r.e:else

p>rl2|qrrl3|r> ply p>rl2|qrrl3|r>q?y

p.2 >ry q.3>ry
p>0|q>rl3|r>0 p>rl2|qr0]r>0
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extraction by example (iii/iii)

p>qll;rl2|q> p?x;rl3|r> if ethenp?yelseq?y

r.e:else

p>qll;rl2|qe p?x;rl3|re> p?y p>qll;rl2|qp p?x;rl3|r>q?y
p.1 > q.x

pl->ax| pb>rl2|q>rl3|r>ifethenp?yelseq?y |p.1->ax

r.e:then r.e:else

p>rl2|qrrl3|r> ply p>rl2|qrrl3|r>q?y
p.2 >ry q.3->ry
p>0|q>rl3|r>0 p>rl2|qr0]r>0

all paths in the graph end in a deadlocked state, so the network
cannot be extracted to a choreography
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properties (finite case)

@ termination

@ soundness (the extracted choreography is bisimilar to the
network)

e completeness (deadlock-free networks are extractable)

o efficient-ish (polynomial in the size of the network, graph size
linear in the size of the extracted choreography)
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dealing with recursion
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properties (general case)

the good ones

@ termination

@ soundness (the extracted choreography is bisimilar to the
network)
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properties (general case)

the good ones

@ termination

@ soundness (the extracted choreography is bisimilar to the
network)

<

the not-so-good ones

@ incompleteness (no can do: deadlock-freedom is undecidable)

@ horrible complexity (graph size exponential in the size of the
extracted choreography)

(still better than previous state-of-the-art)

\
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implementation

creative solutions

@ list of bad nodes

choice paths

some global variables
parallelization
extraction strategies

livelocks

three-valued logic for clever backtracking
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testing

methodology

@ examples from state-of-the-art
@ reverse epp
@ network fuzzer

@ network scrambler
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testing

methodology

@ examples from state-of-the-art
@ reverse epp
@ network fuzzer

@ network scrambler

~> it kind of actually works :-)
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status and future work

@ journal article in progress, expected submission in the winter

@ generalize with process spawning
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thank you!
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