intro
e0

formalizing a turing-complete choreographic
language 1 coq

luis cruz-filipe

(joint work with fabrizio montesi & marco peressotti)

department of mathematics and computer science
university of southern denmark

interactive theorem proving
july 1st, 2021



intro choreographic programming
oe 000

the goal

a certified framework for choreographic programming \




intro
oe

the goal

a certified framework for choreographic programming

the first steps

@ a core choreographic language
@ syntax and semantics

@ a proof of turing completeness




intro
oe

the goal

a certified framework for choreographic programming

the first steps

@ a core choreographic language
@ syntax and semantics

@ a proof of turing completeness

some interesting conclusions. . .




choreographic programming
@00

choreographic programmaing, conceptually

what are choreographies?

high-level global specifications of concurrent and distributed
systems

a new programming paradigm
implementations for the local endpoints are automatically
generated

@ guaranteed to be deadlock-free

@ guaranted to satisfy the specification




choreographic programming
oeo

an example

authentication choreography

c.credentials --> ip.x;

If ip.(check x)
Then ip --> s[left]; ip --> cl[left]; s.token --> c.t

Else ip --> slright]; ip --> clright]




choreographic programming
oeo

an example

authentication choreography

c.credentials --> ip.x;

If ip.(check x)

Then ip --> s[left]; ip --> cl[left]; s.token --> c.t
Else ip --> slright]; ip --> clright]

local implementations

c : ipl!credentials; ip & {left: s?7t; right: 0 }

s : ip & {left: c!token; right: 0 }

ip: c¢?x; If (check x) Then (s(+)left; c(+)left) Else
(s(Hright; c(+)right)




choreographic programming
oeo

an example

authentication choreography

c.credentials --> ip.x;

If ip.(check x)

Then ip --> s[left]; ip --> cl[left]; s.token --> c.t
Else ip --> slright]; ip --> clright]

local implementations

c : ipl!credentials; ip & {left: s?7t; right: 0 }

s : ip & {left: c!token; right: 0 }

ip: c¢?x; If (check x) Then (s(+)left; c(+)left) Else
(s(Hright; c(+)right)

(gets tricky in the presence of recursion. .. ) J




choreographic programming
ooe

a bird’s-eye view

choreography language

endpoint projection

process calculus

compilation

executable code




intro choreographic programming
00 ooe

a bird’s-eye view

choreography language (current work)

endpoint projection

process calculus

compilation

executable code




intro choreographic programming on the formalization
oo ocoe 0000

a bird’s-eye view

choreography language (current work)

endpoint projection //_\
@@ (accepted at ictac'21)

compilation

executable code




intro choreographic programming on the formalization discussion
[e]e] ooe 0000 000000

a bird’s-eye view

choreography language (current work)

endpoint projection //_\
@E@ (accepted at ictac'21)

compilation //\
@ (work in progress)




intro choreographic programming on the formalization discussion

(oo} ooe

a bird’s-eye view

0000 000000

/—\

choreography language (current work)

endpoint projection

process

compilation

\

/\/\
E@ \ (accepted at ictac'21)

m
executable coded ™\ ~ = (work in progress)



on the formalization
@000

why bother?

choreographies are a popular topic. . .

@ active research field
@ many relevant applications

@ potential in choreographic programming




on the formalization
@000

why bother?

choreographies are a popular topic. . .

@ active research field
@ many relevant applications

@ potential in choreographic programming

... but there are many disturbing signs

process calculus and session types plagued by wrong proofs

e complex definitions, long proofs by structural induction
@ situation pointed out at itp'1l5

e formalization of a published journal article
e most proofs were wrong (but the theorems held)

@ big revision of decidability results in the last few years
o published proofs of both A and —A for quite a few A. ..




on the formalization
0e00

contribution

formalization of a core choreography language

@ parametric on expressions, values, &c
@ syntax and semantics
@ progress and deadlock-freedom

@ properties of the semantics: determinism, confluence

@ turing-completeness from the communication structure




on the formalization
0e00

contribution

formalization of a core choreography language

@ parametric on expressions, values, &c
@ syntax and semantics
@ progress and deadlock-freedom

@ properties of the semantics: determinism, confluence

@ turing-completeness from the communication structure

methodology

@ closely followed a published reference
o formalizing took less time than getting that paper accepted

@ no wrong proofs found, but. ..




on the formalization
[e]e] e}

is this good or bad?

first attempt: a miserable failure

@ bad model of out-of-order execution
p-e ——> q.x; r.e’ ——> s.y has two possible reduction
paths




on the formalization
[e]e] e}

is this good or bad?

first attempt: a miserable failure
o bad model of out-of-order execution
@ pen-and-paper definition by means of a structural
precongruence (ugh)
@ the number of auxiliary results exploded, with no end in sight




on the formalization
[e]e] e}

is this good or bad?

first attempt: a miserable failure
o bad model of out-of-order execution
@ pen-and-paper definition by means of a structural
precongruence (ugh)
@ the number of auxiliary results exploded, with no end in sight

two weird coincidences?
o oddly enough, this is also where students get stuck

@ properties are very “intuitive” and actually never* proved

*to the best of the speaker’s knowledge




on the formalization
oooe

is this good or bad? (cont’d)

second attempt: a success story with side-effects

e alternative approach to out-of-order execution (based on the
literature)

@ ‘“intuitive” properties no longer needed (or can be proved)
@ auxiliary lemmas disappeared

o final proof of confluence around 25% of the size of the
previous (incomplete) development




on the formalization
oooe

is this good or bad? (cont’d)

second attempt: a success story with side-effects

e alternative approach to out-of-order execution (based on the
literature)

@ ‘“intuitive” properties no longer needed (or can be proved)
@ auxiliary lemmas disappeared

o final proof of confluence around 25% of the size of the
previous (incomplete) development

and the cherry on top of the cake

our students also liked the new definitions :-)




discussion
000000

random thoughts

proof layering

as usual, the theory is developed in “layers”, each depending on
the previous
o confluence and determinism of the semantics were key
ingredients for turing-completeness

@ once the “right” definitions were there, the development was
very smooth




discussion
0@0000

random thoughts

very classical turing completeness
proved by showing that all partial recursive functions can be
implemented as a choreography

o language where values are natural numbers, minimal set of
expressions
@ a choreography C implements a function f : N7 — N with
input processes pi, ..., P, and output process q if:
o if f(ky,...,k,) is defined and each p; initially stores k;, then
execution of C terminates in a state where g stores
f(ka, ..., kn)
o if f(ky,...,kn) is undefined and each p; initially stores k;, then
execution of C never terminates )




discussion
00000

the next steps

endpoint projection

our choreography language can be projected to a particular process

calculus language
[=] y=i[m]
[=]:

@ both calculus and projection have
been formalized in coq

@ interesting technical challenges

@ see upcoming paper at ictac'21
(available on arXiv)




discussion
000e00

the next steps

implementation

using coq'’s extraction mechanism, we can obtain a certified
compiler from choreographies to processes
@ next step: build an (uncertified?) compiler to a real
programming language
e extend the choreography language (and the process calculus)
with other interesting constructs




discussion
0000e0

conclusions

formalizations of current research:

@ are feasible

e are useful

@ can speed up things



discussion
0000e0

conclusions

formalizations of current research:

@ are feasible

o we did it

@ are useful

e our theory benefitted from it

@ can speed up things

e convincing the reviewers took three years
e convincing coq took only two



OOOOOO

thank you!



	intro
	choreographic programming
	on the formalization
	discussion

