
intro choreographic programming on the formalization discussion

formalizing a turing-complete choreographic
language in coq

lúıs cruz-filipe

(joint work with fabrizio montesi & marco peressotti)

department of mathematics and computer science
university of southern denmark

interactive theorem proving
july 1st, 2021



intro choreographic programming on the formalization discussion

the goal

long-term

a certified framework for choreographic programming

in this work

the first steps

a core choreographic language

syntax and semantics

a proof of turing completeness

teaser

some interesting conclusions. . .



intro choreographic programming on the formalization discussion

the goal

long-term

a certified framework for choreographic programming

in this work

the first steps

a core choreographic language

syntax and semantics

a proof of turing completeness

teaser

some interesting conclusions. . .



intro choreographic programming on the formalization discussion

the goal

long-term

a certified framework for choreographic programming

in this work

the first steps

a core choreographic language

syntax and semantics

a proof of turing completeness

teaser

some interesting conclusions. . .



intro choreographic programming on the formalization discussion

choreographic programming, conceptually

what are choreographies?

high-level global specifications of concurrent and distributed
systems

a new programming paradigm

implementations for the local endpoints are automatically
generated

guaranteed to be deadlock-free

guaranted to satisfy the specification



intro choreographic programming on the formalization discussion

an example

authentication choreography

c.credentials --> ip.x;

If ip.(check x)

Then ip --> s[left]; ip --> c[left]; s.token --> c.t

Else ip --> s[right]; ip --> c[right]

local implementations

c : ip!credentials; ip & {left: s?t; right: 0 }
s : ip & {left: c!token; right: 0 }
ip: c?x; If (check x) Then (s(+)left; c(+)left) Else

(s(+)right; c(+)right)

(gets tricky in the presence of recursion. . . )



intro choreographic programming on the formalization discussion

an example

authentication choreography

c.credentials --> ip.x;

If ip.(check x)

Then ip --> s[left]; ip --> c[left]; s.token --> c.t

Else ip --> s[right]; ip --> c[right]

local implementations

c : ip!credentials; ip & {left: s?t; right: 0 }
s : ip & {left: c!token; right: 0 }
ip: c?x; If (check x) Then (s(+)left; c(+)left) Else

(s(+)right; c(+)right)

(gets tricky in the presence of recursion. . . )



intro choreographic programming on the formalization discussion

an example

authentication choreography

c.credentials --> ip.x;

If ip.(check x)

Then ip --> s[left]; ip --> c[left]; s.token --> c.t

Else ip --> s[right]; ip --> c[right]

local implementations

c : ip!credentials; ip & {left: s?t; right: 0 }
s : ip & {left: c!token; right: 0 }
ip: c?x; If (check x) Then (s(+)left; c(+)left) Else

(s(+)right; c(+)right)

(gets tricky in the presence of recursion. . . )



intro choreographic programming on the formalization discussion

a bird’s-eye view

choreography language

endpoint projection
��

process calculus

compilation
��

executable code



intro choreographic programming on the formalization discussion

a bird’s-eye view

choreography language

endpoint projection
��

(current work)

uu

process calculus

compilation
��

executable code



intro choreographic programming on the formalization discussion

a bird’s-eye view

choreography language

endpoint projection
��

(current work)

uu

process calculus

compilation
��

(accepted at ictac’21)

uu
uu

executable code



intro choreographic programming on the formalization discussion

a bird’s-eye view

choreography language

endpoint projection
��

(current work)

uu

process calculus

compilation
��

(accepted at ictac’21)

uu
uu

executable code (work in progress)

vv
uu



intro choreographic programming on the formalization discussion

a bird’s-eye view

choreography language

endpoint projection
��

(current work)

uu

process calculus

compilation
��

(accepted at ictac’21)

uu
uu

executable code (work in progress)

vv
uu

SS

YY



intro choreographic programming on the formalization discussion

why bother?

choreographies are a popular topic. . .

active research field

many relevant applications

potential in choreographic programming

. . . but there are many disturbing signs

process calculus and session types plagued by wrong proofs

complex definitions, long proofs by structural induction

situation pointed out at itp’15

formalization of a published journal article
most proofs were wrong (but the theorems held)

big revision of decidability results in the last few years

published proofs of both A and ¬A for quite a few A. . .



intro choreographic programming on the formalization discussion

why bother?

choreographies are a popular topic. . .

active research field

many relevant applications

potential in choreographic programming

. . . but there are many disturbing signs

process calculus and session types plagued by wrong proofs

complex definitions, long proofs by structural induction

situation pointed out at itp’15

formalization of a published journal article
most proofs were wrong (but the theorems held)

big revision of decidability results in the last few years

published proofs of both A and ¬A for quite a few A. . .



intro choreographic programming on the formalization discussion

contribution

formalization of a core choreography language

parametric on expressions, values, &c

syntax and semantics

progress and deadlock-freedom

properties of the semantics: determinism, confluence

turing-completeness from the communication structure

methodology

closely followed a published reference

formalizing took less time than getting that paper accepted

no wrong proofs found, but. . .



intro choreographic programming on the formalization discussion

contribution

formalization of a core choreography language

parametric on expressions, values, &c

syntax and semantics

progress and deadlock-freedom

properties of the semantics: determinism, confluence

turing-completeness from the communication structure

methodology

closely followed a published reference

formalizing took less time than getting that paper accepted

no wrong proofs found, but. . .



intro choreographic programming on the formalization discussion

is this good or bad?

first attempt: a miserable failure

bad model of out-of-order execution
p.e --> q.x; r.e’ --> s.y has two possible reduction
paths

pen-and-paper definition by means of a structural
precongruence (ugh)

the number of auxiliary results exploded, with no end in sight

two weird coincidences?

oddly enough, this is also where students get stuck

properties are very “intuitive” and actually never* proved

*to the best of the speaker’s knowledge



intro choreographic programming on the formalization discussion

is this good or bad?

first attempt: a miserable failure

bad model of out-of-order execution

pen-and-paper definition by means of a structural
precongruence (ugh)

the number of auxiliary results exploded, with no end in sight

two weird coincidences?

oddly enough, this is also where students get stuck

properties are very “intuitive” and actually never* proved

*to the best of the speaker’s knowledge



intro choreographic programming on the formalization discussion

is this good or bad?

first attempt: a miserable failure

bad model of out-of-order execution

pen-and-paper definition by means of a structural
precongruence (ugh)

the number of auxiliary results exploded, with no end in sight

two weird coincidences?

oddly enough, this is also where students get stuck

properties are very “intuitive” and actually never* proved

*to the best of the speaker’s knowledge



intro choreographic programming on the formalization discussion

is this good or bad? (cont’d)

second attempt: a success story with side-effects

alternative approach to out-of-order execution (based on the
literature)

“intuitive” properties no longer needed (or can be proved)

auxiliary lemmas disappeared

final proof of confluence around 25% of the size of the
previous (incomplete) development

and the cherry on top of the cake

our students also liked the new definitions :-)



intro choreographic programming on the formalization discussion

is this good or bad? (cont’d)

second attempt: a success story with side-effects

alternative approach to out-of-order execution (based on the
literature)

“intuitive” properties no longer needed (or can be proved)

auxiliary lemmas disappeared

final proof of confluence around 25% of the size of the
previous (incomplete) development

and the cherry on top of the cake

our students also liked the new definitions :-)



intro choreographic programming on the formalization discussion

random thoughts

proof layering

as usual, the theory is developed in “layers”, each depending on
the previous

confluence and determinism of the semantics were key
ingredients for turing-completeness

once the “right” definitions were there, the development was
very smooth



intro choreographic programming on the formalization discussion

random thoughts

very classical turing completeness

proved by showing that all partial recursive functions can be
implemented as a choreography

language where values are natural numbers, minimal set of
expressions

a choreography C implements a function f : Nn → N with
input processes p1, . . . , pn and output process q if:

if f (k1, . . . , kn) is defined and each pi initially stores ki , then
execution of C terminates in a state where q stores
f (k1, . . . , kn)
if f (k1, . . . , kn) is undefined and each pi initially stores ki , then
execution of C never terminates



intro choreographic programming on the formalization discussion

the next steps

endpoint projection

our choreography language can be projected to a particular process
calculus language

both calculus and projection have
been formalized in coq

interesting technical challenges

see upcoming paper at ictac’21
(available on arXiv)



intro choreographic programming on the formalization discussion

the next steps

implementation

using coq’s extraction mechanism, we can obtain a certified
compiler from choreographies to processes

next step: build an (uncertified?) compiler to a real
programming language

extend the choreography language (and the process calculus)
with other interesting constructs



intro choreographic programming on the formalization discussion

conclusions

formalizations of current research:

are feasible

are useful

can speed up things



intro choreographic programming on the formalization discussion

conclusions

formalizations of current research:

are feasible

we did it

are useful

our theory benefitted from it

can speed up things

convincing the reviewers took three years
convincing coq took only two



intro choreographic programming on the formalization discussion

thank you!


	intro
	choreographic programming
	on the formalization
	discussion

