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the goal

a certified framework for choreographic programming

the first steps

@ a core choreographic language
@ a core process calculus

o certified choreography compilation

extends work initially presented at types'19 and at itp'21
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choreographic programmaing, conceptually

what are choreographies?

high-level global specifications of concurrent and distributed
systems

a new programming paradigm
implementations for the local endpoints are automatically
generated

@ guaranteed to be deadlock-free

@ guaranted to satisfy the specification
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an example

authentication choreography

c.credentials --> ip.x;

If ip.(check x)

Then ip --> s[left]; ip --> cl[left]; s.token --> c.t
Else ip --> slright]; ip --> clright]

local implementations

c : ipl!credentials; ip & {left: s?7t; right: 0 }

s : ip & {left: c!token; right: 0 }

ip: c¢?x; If (check x) Then (s(+)left; c(+)left)
Else (s(+)right; c(+)right)

(gets tricky in the presence of recursion. .. ) J
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why bother with formalising?

choreographies are a popular topic. . .

@ active research field
@ many relevant applications

@ potential in choreographic programming

... but there are many disturbing signs

process calculus and session types plagued by wrong proofs

e complex definitions, long proofs by structural induction
@ situation pointed out at itp'1l5

e formalization of a published journal article
e most proofs were wrong (but the theorems held)

@ big revision of decidability results in the last few years
o published proofs of both A and —A for quite a few A. ..
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the first step

choreographic language

@ syntax and semantics

@ progress and deadlock-freedom

@ properties of the semantics:
determinism, confluence

@ turing-completeness from the (i
communication structure
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the choreography language

a minimal language

@ value communication
o label selections (for projection)
e conditionals

e trailing procedure calls (for recursion)

agnostic language

@ parametric on expressions and values

@ only two labels
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the process calculus

finite sets of processes running in parallel

behaviours

local counterparts to the choreography actions
@ send and receive
@ choice and branching

@ conditional

trailing procedure calls

agnostic language as before

@ parametric on expressions and values

A

@ only two labels
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actions split in their components

value communication ~~ send/receive pair

label selection ~~ choice/branching pair

conditional ~~ conditional

procedure call ~» procedure call
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compilation, informally

actions split in their components

@ value communication ~~ send/receive pair
o label selection ~~ choice/branching pair
@ conditional ~~ conditional

@ procedure call ~» procedure call

knowledge of choice

when a process makes a choice, other processes’ behaviours can
only depend on it after it has been communicated to them
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compilation and knowledge of choice

authentication choreography, wrong

c.credentials --> ip.x;
If ip.(check x)

Then s.token --> c.t
Else O )

local itmplementations

ip: c¢?x; If (check x) Then O Else 0
c : 1ip'!credentials; 777
s @ 777
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compilation and knowledge of choice

authentication choreography, right

c.credentials --> ip.x;

If ip.(check x)

Then ip --> s[left]; ip --> cl[left]; s.token --> c.t
Else ip --> slright]; ip --> clright]

local implementations

c : ipl!credentials; ip & {left: s?7t; right: 0 }

s : ip & {left: c!token; right: 0 }

ip: c¢?x; If (check x) Then (s(+)left; c(+)left)
Else (s(+)right; c(+)right)
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compilation and knowledge of choice

authentication choreography, with logger

c.credentials --> ip.x;

If ip.(check x)

Then ip.(x,yes) --> 1l.y; (...)
Else ip.(x,n0) --> l.y; (...)

local itmplementations

1 : 1ip%y
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the challenges of partiality

compilation is a partial function

o failure can arise from trying to combine (merge) incompatible
branches of a conditional

all coq functions are total

o explicit terms for failure

(requires extended syntax, generates isomorphic structures)
@ option monad

(requires a lot of case analysis, horrible proofs)

@ proof terms where needed
(requires bookkeeping, proof irrelevance)

~> no “best” solution, we use a bit of everything
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the challenges of case explosion

the root of all problems

the main results require proofs by structural induction, often on
two objects

@ enormous amounts of cases (e.g. 512, with one subcase
further dividing into 64)

@ strong similarities, but still slightly different proofs

coq to the rescue!

automation features and tactic language
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what’s next?

implementation

using coq'’s extraction mechanism, we can obtain a certified
compiler from choreographies to processes
@ next step: build an (uncertified?) compiler to a real
programming language
@ extend the choreographic language (and the process calculus)
with other interesting constructs




thank you!
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