
intro choreographic programming certifying choreography compilation discussion

formalising choreographic programming

lúıs cruz-filipe

(joint work with fabrizio montesi & marco peressotti)

department of mathematics and computer science
university of southern denmark

ictac 2021
september 8th, 2021



intro choreographic programming certifying choreography compilation discussion

the goal

long-term

a certified framework for choreographic programming

in this talk

the first steps

a core choreographic language

a core process calculus

certified choreography compilation

history

extends work initially presented at types’19 and at itp’21



intro choreographic programming certifying choreography compilation discussion

the goal

long-term

a certified framework for choreographic programming

in this talk

the first steps

a core choreographic language

a core process calculus

certified choreography compilation

history

extends work initially presented at types’19 and at itp’21



intro choreographic programming certifying choreography compilation discussion

the goal

long-term

a certified framework for choreographic programming

in this talk

the first steps

a core choreographic language

a core process calculus

certified choreography compilation

history

extends work initially presented at types’19 and at itp’21



intro choreographic programming certifying choreography compilation discussion

choreographic programming, conceptually

what are choreographies?

high-level global specifications of concurrent and distributed
systems

a new programming paradigm

implementations for the local endpoints are automatically
generated

guaranteed to be deadlock-free

guaranted to satisfy the specification



intro choreographic programming certifying choreography compilation discussion

an example

authentication choreography

c.credentials --> ip.x;

If ip.(check x)

Then ip --> s[left]; ip --> c[left]; s.token --> c.t

Else ip --> s[right]; ip --> c[right]

local implementations

c : ip!credentials; ip & {left: s?t; right: 0 }
s : ip & {left: c!token; right: 0 }
ip: c?x; If (check x) Then (s(+)left; c(+)left)

Else (s(+)right; c(+)right)

(gets tricky in the presence of recursion. . . )



intro choreographic programming certifying choreography compilation discussion

an example

authentication choreography

c.credentials --> ip.x;

If ip.(check x)

Then ip --> s[left]; ip --> c[left]; s.token --> c.t

Else ip --> s[right]; ip --> c[right]

local implementations

c : ip!credentials; ip & {left: s?t; right: 0 }
s : ip & {left: c!token; right: 0 }
ip: c?x; If (check x) Then (s(+)left; c(+)left)

Else (s(+)right; c(+)right)

(gets tricky in the presence of recursion. . . )



intro choreographic programming certifying choreography compilation discussion

an example

authentication choreography

c.credentials --> ip.x;

If ip.(check x)

Then ip --> s[left]; ip --> c[left]; s.token --> c.t

Else ip --> s[right]; ip --> c[right]

local implementations

c : ip!credentials; ip & {left: s?t; right: 0 }
s : ip & {left: c!token; right: 0 }
ip: c?x; If (check x) Then (s(+)left; c(+)left)

Else (s(+)right; c(+)right)

(gets tricky in the presence of recursion. . . )



intro choreographic programming certifying choreography compilation discussion

a bird’s-eye view

choreographic language

choreography compilation

��

process calculus

compilation

��

executable code



intro choreographic programming certifying choreography compilation discussion

a bird’s-eye view

choreographic language

choreography compilation

��

(presented at itp’21)

uu

process calculus

compilation

��

executable code



intro choreographic programming certifying choreography compilation discussion

a bird’s-eye view

choreographic language

choreography compilation

��

(presented at itp’21)

uu

process calculus

compilation

��

(current work)

uu
uu

executable code



intro choreographic programming certifying choreography compilation discussion

a bird’s-eye view

choreographic language

choreography compilation

��

(presented at itp’21)

uu

process calculus

compilation

��

(current work)

uu
uu

executable code (work in progress)

vv
uu



intro choreographic programming certifying choreography compilation discussion

a bird’s-eye view

choreographic language

choreography compilation

��

(presented at itp’21)

uu

process calculus

compilation

��

(current work)

uu
uu

executable code (work in progress)

vv
uu

RR

XX



intro choreographic programming certifying choreography compilation discussion

why bother with formalising?

choreographies are a popular topic. . .

active research field

many relevant applications

potential in choreographic programming

. . . but there are many disturbing signs

process calculus and session types plagued by wrong proofs

complex definitions, long proofs by structural induction

situation pointed out at itp’15

formalization of a published journal article
most proofs were wrong (but the theorems held)

big revision of decidability results in the last few years

published proofs of both A and ¬A for quite a few A. . .



intro choreographic programming certifying choreography compilation discussion

why bother with formalising?

choreographies are a popular topic. . .

active research field

many relevant applications

potential in choreographic programming

. . . but there are many disturbing signs

process calculus and session types plagued by wrong proofs

complex definitions, long proofs by structural induction

situation pointed out at itp’15

formalization of a published journal article
most proofs were wrong (but the theorems held)

big revision of decidability results in the last few years

published proofs of both A and ¬A for quite a few A. . .



intro choreographic programming certifying choreography compilation discussion

the first step

choreographic language

syntax and semantics

progress and deadlock-freedom

properties of the semantics:
determinism, confluence

turing-completeness from the
communication structure

(itp’21)



intro choreographic programming certifying choreography compilation discussion

the choreography language

a minimal language

value communication

label selections (for projection)

conditionals

trailing procedure calls (for recursion)

agnostic language

parametric on expressions and values

only two labels



intro choreographic programming certifying choreography compilation discussion

the choreography language

a minimal language

value communication

label selections (for projection)

conditionals

trailing procedure calls (for recursion)

agnostic language

parametric on expressions and values

only two labels



intro choreographic programming certifying choreography compilation discussion

the process calculus

networks

finite sets of processes running in parallel

behaviours

local counterparts to the choreography actions

send and receive

choice and branching

conditional

trailing procedure calls

agnostic language as before

parametric on expressions and values

only two labels



intro choreographic programming certifying choreography compilation discussion

compilation, informally

actions split in their components

value communication ⇝ send/receive pair

label selection ⇝ choice/branching pair

conditional ⇝ conditional

procedure call ⇝ procedure call

knowledge of choice

when a process makes a choice, other processes’ behaviours can
only depend on it after it has been communicated to them



intro choreographic programming certifying choreography compilation discussion

compilation, informally

actions split in their components

value communication ⇝ send/receive pair

label selection ⇝ choice/branching pair

conditional ⇝ conditional

procedure call ⇝ procedure call

knowledge of choice

when a process makes a choice, other processes’ behaviours can
only depend on it after it has been communicated to them



intro choreographic programming certifying choreography compilation discussion

compilation and knowledge of choice

authentication choreography, wrong

c.credentials --> ip.x;

If ip.(check x)

Then s.token --> c.t

Else 0

local implementations

ip: c?x; If (check x) Then 0 Else 0

c : ip!credentials; ???

s : ???



intro choreographic programming certifying choreography compilation discussion

compilation and knowledge of choice

authentication choreography, right

c.credentials --> ip.x;

If ip.(check x)

Then ip --> s[left]; ip --> c[left]; s.token --> c.t

Else ip --> s[right]; ip --> c[right]

local implementations

c : ip!credentials; ip & {left: s?t; right: 0 }
s : ip & {left: c!token; right: 0 }
ip: c?x; If (check x) Then (s(+)left; c(+)left)

Else (s(+)right; c(+)right)



intro choreographic programming certifying choreography compilation discussion

compilation and knowledge of choice

authentication choreography, with logger

c.credentials --> ip.x;

If ip.(check x)

Then ip.(x,yes) --> l.y; (...)

Else ip.(x,no) --> l.y; (...)

local implementations

l : ip?y

(...)



intro choreographic programming certifying choreography compilation discussion

the challenges of partiality

compilation is a partial function

failure can arise from trying to combine (merge) incompatible
branches of a conditional

all coq functions are total

explicit terms for failure

option monad

proof terms where needed

⇝ no “best” solution, we use a bit of everything



intro choreographic programming certifying choreography compilation discussion

the challenges of partiality

compilation is a partial function

failure can arise from trying to combine (merge) incompatible
branches of a conditional

all coq functions are total

explicit terms for failure

option monad

proof terms where needed

⇝ no “best” solution, we use a bit of everything



intro choreographic programming certifying choreography compilation discussion

the challenges of partiality

compilation is a partial function

failure can arise from trying to combine (merge) incompatible
branches of a conditional

all coq functions are total

explicit terms for failure
(requires extended syntax, generates isomorphic structures)

option monad
(requires a lot of case analysis, horrible proofs)

proof terms where needed
(requires bookkeeping, proof irrelevance)

⇝ no “best” solution, we use a bit of everything



intro choreographic programming certifying choreography compilation discussion

the challenges of partiality

compilation is a partial function

failure can arise from trying to combine (merge) incompatible
branches of a conditional

all coq functions are total

explicit terms for failure
(requires extended syntax, generates isomorphic structures)

option monad
(requires a lot of case analysis, horrible proofs)

proof terms where needed
(requires bookkeeping, proof irrelevance)

⇝ no “best” solution, we use a bit of everything



intro choreographic programming certifying choreography compilation discussion

the challenges of case explosion

the root of all problems

the main results require proofs by structural induction, often on
two objects

enormous amounts of cases (e.g. 512, with one subcase
further dividing into 64)

strong similarities, but still slightly different proofs

coq to the rescue!

automation features and tactic language



intro choreographic programming certifying choreography compilation discussion

what’s next?

implementation

using coq’s extraction mechanism, we can obtain a certified
compiler from choreographies to processes

next step: build an (uncertified?) compiler to a real
programming language

extend the choreographic language (and the process calculus)
with other interesting constructs



intro choreographic programming certifying choreography compilation discussion

thank you!


	intro
	choreographic programming
	certifying choreography compilation
	discussion

