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Abstract. In this paper we consider the role of the International Planning Competition
series in the evaluation of planners, both directly through the events themselves, and indi-
rectly through the creation of resources and infrastructure. We also consider the problem
of evaluation based on data collected both in the competitions and otherwise and examine
some of the issues that arise in attempting to formulate and test hypotheses around the data.

1 Introduction

In 1998, Drew McDermott organised the �rst of what has become a biennial series of international
planning competitions (IPC) [1,2,3,4,5]. Five planners competed in the �rst competition and many
more have competed in each of the succeeding events. The competitions have stimulated a dramatic
rise in performance of planners, with the achievements of planning systems having improved not
only in terms of the speed to �nd plans, but also in terms of the range and complexity of the domain
models they are able to manage. In particular, the 3rd IPC saw the development of temporal
planning models [6], in the 4th IPC domain models were enhanced with derived predicates and
the 5th (and most recent) IPC has seen the addition of soft constraints and trajectory constraints
to the models of planning problems [7]. As a driver of research in planning, the IPC series has
had impact beyond the immediate IPC events themselves, having encouraged the widespread use
of a standard planning domain description language (PDDL), the creation of a large number of
new benchmark domains and problem suites and a wide expectation that empirical evaluations
of planning systems should now compare planners with the current collection of state-of-the-art
systems as identi�ed in the IPC series.

Competition series are increasingly common tools for stimulating research development and
interest in a range of �elds, including robotics (RoboCup and the Darpa Autonomous Vehicle
Challenge), theorem proving, SAT solving and natural language processing. Competitions are ex-
tremely successful at focussing interest on speci�c problems and stimulating excitement in a �eld.
A great bene�t is that it is possible for a new approach to be applied by a completely unknown
researcher in a �eld and, if it is successful, for it to rapidly become widely known and assimilated.
They also have disadvantages: they can lead to loss of diversity as researchers seek to squeeze a
little more performance out of whatever system won the preceding competition, they can cause
research to focus on an arti�cial measure of performance which distracts from the real problems
that the community might face and they can lead to stagnation. There are ways to mitigate these
problems. In the planning community we have, so far, managed to achieve a rapid pace of develop-
ment in the challenges set in the competition series, with a consistent pressure towards modelling
realistic planning problems. There has also been a steady series of innovations in the �eld, although
some techniques have become widely adopted standard approaches as a consequence of signi�cant
success in the competitions.

One of the challenges faced by the competition organisers is to de�ne the basis on which
winners are determined in each successive event. The changing challenges of the IPC series mean
that evaluation has also evolved over the series. There is also an important di�erence between the
choice of a winner in a competition and the more careful scienti�c evaluation of the comparative
performance of di�erent planning systems. In this short paper we brie�y consider the problems
and challenges that arise in using competition data as the basic of empirical evaluation of planners
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and we also discuss techniques which we believe to be useful in the comparative evaluation of such
systems, based on our experiences of organising the 3rd IPC and performing the most extensive
evaluation of the results that has so far followed any of the IPC series [3].

2 Evaluating Planning Systems

There are three dimensions that are most important in measuring the comparative performance of
planning systems: the speed with which plans are produced, the coverage of the problems presented
and the quality of the plans constructed in each problem that is solved. A planning problem is
considered solved if a feasible plan is found. Optimality is not required (it is generally too hard
to solve planning instances to optimality), but, nevertheless, the quality of plans is a relevant
metric. By coverage we mean the proportion of problems solved and the balance of this proportion
across di�erent domains. For example, it is better to solve some problems from all domains than
all problems from one domain but none from any of the others.

In the �rst competition, McDermott attempted to de�ne, beforehand, a complex formula to
attempt to balance these various factors and arrive at a winner. The formula was abandoned before
the �rst round was complete and since then the evaluation, for the competition purposes, has been
a rather more subjective one based on an intuitive balance between these factors.

The relative emphasis of the factors has changed a lot over the series. In the �rst two com-
petitions, speed and coverage were primary, with quality being measured solely in terms of the
number of steps in the plans and largely being placed behind the other factors. In the 3rd IPC a
new extension of the competition language allowed problems to contain an explicit description of
the metric that would be used to judge the quality of a plan, with the metric varying from problem
to problem. This led to a far greater emphasis on plan quality and the three factors became more
closely balanced. The 5th IPC has seen the emphasis on plan quality increase still further, with
speed of planning dropping into a far less signi�cant role. The argument has been that if a planner
produces a plan in its time-limit (30 minutes in the 5th IPC) then the precise timing is not critical:
programming tweaks, choice of data structures and programming language, compiler and so on
can all have an impact on speed to the extent that when performance is measured in seconds the
di�erence in speed is not a very reliable measure of the behaviour. Coverage is more important
because it gives some insight into scaling behaviour and the power of a planner to handle a wide
variety of language features and interactions between them.

The introduction of soft constraints made plan quality an even more important issue in plan
production and a wide range of very important questions have been raised through the use of plan
metrics and soft constraints in the evaluation of plans. For example, the use of soft constraints, or
preferences, allows the speci�cation of over-subscription problems, where not all of the speci�ed
goals can be achieved and the planner must determine which subset will achieve greatest reward
at lowest cost.

Having identi�ed the dimensions on which planners are evaluated, it is also helpful to observe
that it has become standard practice in the planning literature to evaluate ideas by considering
comparative performance. That is, a new technique is typically evaluated by empirical comparison
of a planner sporting the technique with one that is not. In some cases, the base planner is the
same for both data sets, with only the new enhancement di�erentiating the behaviours, while in
other cases the new technique cannot be separated from the planner that uses it and then the
comparison is between the new planner and some existing planning system, usually one recognised
through the competition as a good performer.

It is worth emphasising, for the bene�t of the reader who is unfamiliar with AI planning
research, that the objective in much of the �eld is to construct a general planning system, capable
of taking as input a declarative description of a domain and a problem instance for that domain
(specifying the identity and initial con�guration of objects in the domain and properties required as
a goal) and producing a plan (an agenda of actions from the domain that will transform the initial
state into one that satis�es the goal). The domain descriptions are problem-centred, rather than
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solution-centred, in the sense that they describe only what actions it is possible to perform and not
the circumstances under which it might be desirable or sensible to perform them. Planning systems
that rely on advice about when to apply particular actions are often called knowledge-intensive

planners and have also been explored in the competition series, although less frequently.
We now turn to the critical question, which is how can comparison be drawn between two

planning systems? The usual approach is to take a large sample of problems, from a wide range of
benchmark domains, and run both planners on each problem. At this point, the hope is that one
planner will show a su�ciently consistent improvement in all the useful dimensions that there is
no need to do anything more than present the numbers in graphs and leave it to the reader to infer
which system is better. In practice, there are many cases where things are not as convenient as this
and the comparison in performance gives mixed messages, with sometimes one planner performing
better and sometimes the other, sometimes with con�icting evidence when considering the di�erent
dimensions of performance. The consequence is often that claims about the performance of a new
system must be quali�ed.

Several problems arise in drawing these comparisons. Firstly, although the benchmark problem
set has increased since the IPC series began, nevertheless, empirical evaluations are restricted to a
relatively limited set of domains. Some work has been carried out to analyse some of the properties
of these benchmarks to determine important characteristics of them. For example, whether they are
intrinsically hard problems [8] or yield good approximate solutions [9], whether they have natural
structure that supports certain planning techniques [10] and whether they show particular kinds
of symmetry [11,12].

In general, it is clear that good performance on the current set of benchmark domains is not
a guarantee of good performance on new problems and planners can behave very di�erently when
faced with a new domain. Secondly, the benchmark domains are associated with problem sets
(typically anywhere between 20 and 50 problem instances are available for each domain) and these
are designed to represent some sort of increasing challenge to planners. Unfortunately, it quickly
becomes apparent that planners do not all agree on the relative hardness of individual problem
instances and the intuitive notion of scaled problem di�culty does not always accord with the
pattern of behaviour in the performance of planners. This problem is most acute in considering the
behaviour across di�erent planning domains: agreement within domains is stronger. Finally, the
(necessary) use of a cut o� time in evaluating the performance of a planner leads to an inevitable
censoring e�ect in the data, where it is not always clear whether a planner might have returned a
result if it had been given just a few seconds more to deliver it.

In practice, the empirical evaluation of planners rests on several assumptions: that the bench-
mark domains are somehow representative of a wider range of interesting problems, that the in-
stances presented to the planners are representative of a wide range of problems in each domain,
that the scaling behaviour can be usefully induced from a small set of problem instances and that
the trends in relative behaviour of two planners can be induced from the sample on which they are
based. Of course, several of these problems are typical of all empirical science and boil down to the
robustness of the sampling strategy and the strength of the claims for generality made from the
empirical evidence. The hypotheses that are typically of interest are assertions of consistent per-
formance di�erences between planners in terms of one or more of the dimensions in which they are
assessed. It is common to generalise from the samples to make claims about planner performance
across �all planning problems�, if only implicitly.

2.1 Competitions and Scienti�c Evaluation

Our experiences in organising the 3rd IPC convinced us that it is very di�cult to combine the
generation of data in a competition context with the scienti�c evaluation of systems. A key di�culty
is that the scienti�c method of constructing hypotheses and then carefully empirically testing them
relies on freedom to respond to earlier results in order to construct new hypotheses and to have
freedom to generate data from a wide sample space. In a competition, the key is to make an event
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that is informative and entertaining for the observers and that is practical in terms of time and
technical demands for the competitors. The result of a competition is not peer-reviewed, but an
entertaining judgement and the process depends on speedy assimilation of the data rather than
slow and careful analysis.

After the 3rd IPC, we took the data that had been generated and performed several careful
analyses, but we found that some of the questions we would have liked to answer could not be
tackled with the data we had collected. Nevertheless, the competition generated more than 4000
data points (including about 4000 plans) between 13 di�erent planners, across eight domains. Each
plan included both a time value to produce it and a quality measure of the resulting plan. With this
much data it is clear that there is scope to make some assessments about the relative behaviours
of the various planners.

3 Empirical Methods and the 3rd IPC

We will now brie�y review some of the techniques we applied in evaluating the results of the 3rd
IPC and comment on the issues they raised. We believe that some of the techniques we applied in
evaluating the data are very general and would be of interest and use in other e�orts at empirical
evaluation of AI systems.

3.1 Experimental Setup

The collection of the data was organised as follows: a single machine was used by all competitors.
Competitors logged on to the machine remotely to run their planners on the problem sets. Domains
were released with a limited time available to review them and test planners on sample problem
instances (to check for any parsing bugs or other minor problems) before the main problem sets for
the domain instance were released. Each domain had 20 associated problem instances of increasing
size (measured in terms of the numbers of constants and related goals in each instance). The
planners were allowed a maximum of 30 minutes on each problem instance. It was necessary to
impose a limit because we wanted to collect a great deal of data in a short time.

3.2 Statistical Evaluation

Our approach was to construct a series of hypotheses and then to test them using familiar statistical
techniques. For example, we formulated the null hypothesis that the data o�ered no basis on which
to partially order the planners in terms of their performance, either in time or in quality. We used
Wilcoxon rank sum matched pairs tests pairwise between planners, using a su�ciently small p

value (we were more conservative than the Bonferroni correction and used p=0.001) to allow us to
combine the results into a single tableau (partial order) between all the planners at a combined p

value of 0.05.
An important advantage of the Wilcoxon test is that it is non-parametric, since it uses ranks

rather than absolute data values. This matters a great deal, since the data points were collected for
problems of (deliberately) increasing di�culty and the di�erences in performance between planners
are a�ected by the sizes of the problems they are solving. In particular, on small problems the
di�erence in performance is typically much smaller than on larger problems, as might be expected.
Unfortunately, there is no way to normalise the di�erences according to problem di�culty because
there is no reliable measure of problem di�culty � indeed, the question of how problem di�culty
might be measured in order to correlate it with performance was one of the issues we considered
in examining the results.

Since the performance di�erences are dependent on the problem di�culty as well as the plan-
ners, and the problem di�culties were not carefully controlled, the performance di�erences could
not be expected to follow any particular distribution, forcing us to look at non-parametric tests.
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Fully Strips Numeric HardNumeric SimpleTime Time Complex
Automated
Depots F21,110 = 5.3 F21,44 = 5.48 F21,66 = 1.77 F20,63 = 2.14
DriverLog F19,100 = 17.1 F19,40 = 17.4 F19,40 = 4.05 F19,60 = 4.44 F19,60 = 4.63
ZenoTravel F19,100 = 21.7 F19,40 = 14 F19,60 = 9.4 F17,36 = 12.1
Rovers F19,80 = 4.54 F18,38 = 9.47 F19,60 = 4.25 F19,40 = 6.92
Satellite F19,100 = 7.36 F15,48 = 1.74 F19,20 = 11.8 F19,60 = 3.6 F19,60 = 4.19 F19,60 = 3.78
FreeCell F19,100 = 6.21
Settlers F5,6 = 1.6

Fig. 1. F-values for the multiple judgments rank correlation tests.

The Wilcoxon test allowed us to check whether there was a consistent performance di�erence be-
tween pairs of planners, without considering its magnitude. A less powerful test, but one that is
also non-parametric, is a simple proportion test in which we considered the proportion of problems
in which one planner performed better than another.

Details of the outcome of our tests can be found in [3] � for the purposes of this paper,
the important observation is that the the Wilcoxon rank sum matched pairs test was a valuable
tool in examining the relative performance of systems on a data set with unknown distribution.
Furthermore, this test is reasonably robust to the problem of cut o� in the evaluation of relative
timing performance because the ranks for these di�erences can be set to place them last in the
series. The Wilcoxon test has been adopted by other authors in the planning �eld, in�uenced by
our work, as a suitable test for performing pairwise performance comparisons between planners.
We believe this to be a useful tool that might �nd wider application.

In order to check whether planners agreed on the relative di�culty of planning problems we
used a �rank correlation in multiple judgments" test. We used the planners themselves as judges to
determine how di�cult individual problems were. In each test the n planners rank the k problem
instances in order of time taken to solve. Unsolved problems create no di�culties as they are
pushed to the top end of the ranking. The rank correlation tests for multiple judgements determines
whether the independent rankings made by the n planners agree. The test statistic follows the F-
distribution with (k − 1, k(n − 1)) degrees of freedom determining whether the critical value is
exceeded. We formulated an explicit null and alternative hypothesis:

Null Hypothesis: The planners di�er in their judgements about which individual
problem instances are hard within a given domain/level combination.

Alternative Hypothesis: The planners demonstrate signi�cant agreement about the
relative di�culties of the problem instances within any given domain/level combination.

The results of the tests are shown in Figure 1 (repeated from [3]). The cells in the �gure report
the F values obtained (and the degrees of freedom used). In almost all cases the critical value was
exceeded and the null hypothesis of non-agreement could be rejected for at least the 0.05 level.
In a few cases (those reported in bold font) the critical value was not exceeded and no statistical
evidence was therefore found of agreement between the planners about the di�culty of instances in
the corresponding domain and level. It is interesting to note that the problematic cases are all within
the Numeric level, for both fully-automated and hand-coded (knowledge-intensive) planners. This
collection of problems includes actions with numeric e�ects and preconditions, rather than only
logical conditions. In this competition they were a very new feature and performance in domains
where they were used was quite variable.

Once we had established where there was agreement between planners about the di�culty
of problems, we were also able to consider the relative scaling behaviours of planners on these
problems (which is not possible if the planners do not agree on which problems are hard). In some
cases the subset of problems on which there was consistent agreement about relative di�culty was
too small to make comparisons of scaling behaviour reliable. This is one area where an opportunity
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FF LPG MIPS Sapa VHPOP
strips numeric strips numeric simple time time strips simple

time time

FF 0.36
J

0.87 0.93
N N

0.93
N

LPG
J

0.52 0.51 0.61 0.58 0.44 0.48
MIPS

J J
Sapa

N N J J
VHPOP

J N J N N
Fig. 2. Table showing correlation values, for fully-automated planners, between problem di�culty and
di�erence in time performance, indicating scaling behaviour.

to examine the data before creating further tests might have led to more careful generation of test
cases for scaling.

Our results in this case are shown in �gure 2. The columns denote planners performing on
individual types of domains (the competition had �ve or six variants of each domain, emphasising
di�erent language features in each case). The rows denote the planners and each cell contains the
comparison between the corresponding pair of planners on a single domain variant type. We use

⊙
to indicate that there is insu�cient agreement between the planners on the di�culty of domains,
or the ranking of problems, for a comparison to be drawn. We use

⊗
to indicate that one of the

planners in the pair being compared produced insu�cient data for a comparison to be made. As can
be seen, there are several places where the agreement between planners over the precise ranking of
individual problems was too limited to support a further test for scaling performance (the situation
denoted with

⊙
in �gure 2). To avoid duplication of data we place entries as positive correlations

only in the cell corresponding to the row for the planner favoured by the comparison. For example,
FF is favoured in the comparisons with LPG, MIPS, Sapa and VHPOP. Once again, in these tests
we used ranks rather than absolute values in order to avoid relying on any assumptions about the
distributions. In this case, we used a Spearman rank correlation test. For those who are interested,
a detailed discussion of the results and their interpretation is given in [3]. Our purpose here is to
draw attention to the technique we used and the way in which it was applied.

4 Conclusion

In this paper we have discussed the IPC series which has proved highly in�uential in promoting
the development of AI planning technology in the past eight years. We have brie�y reviewed some
of the issues that have arisen in the con�ict between the goals of a competition and the goals of
a scienti�c study. We have also described our own experiences in evaluating data generated in the
3rd IPC and we have discussed several of the statistical approaches we used in testing hypotheses
about the relative performances of the competing planners. These techniques are, of course, widely
known in the empirical sciences, but we believe that they should be of particular interest to the AI
community, where they are, in our experience, less well known and even less widely used. Apart
from stimulating huge growth in the power of planning systems, both in the expressiveness of the
models they can handle and in the speed with which they can plan, the IPC series has also been
central in promoting a more rigorous approach to empirical evaluation of planning systems and
the use of more extensive data collection and evaluation. This is a healthy trend that should be
encouraged in planning and in the wider AI community.
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