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Probability CalculusSummary

First-order logic:
– objects and relations are semantic primitives
– syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:
– conventions for describing actions and change in FOL
– can formulate planning as inference on a situation calculus KB
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Probability CalculusOutline

1. Probability Calculus
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Probability CalculusOutline

♦ Uncertainty
♦ Probability
♦ Syntax and Semantics
♦ Inference
♦ Independence and Bayes’ Rule
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Probability CalculusUncertainty

Let action At = leave for airport t minutes before flight
Will At get me there on time?

Problems:
1) partial observability (road state, other drivers’ plans, etc.)
2) noisy sensors (KCBS traffic reports)
3) uncertainty in action outcomes (flat tire, etc.)
4) immense complexity of modelling and predicting traffic

Hence a purely logical approach either

1. risks falsehood: “A25 will get me there on time”
2. leads to conclusions that are too weak for decision making:

“A25 will get me there on time if there’s no accident on the bridge
and it doesn’t rain and my tires remain intact etc etc.”

(A1440 might reasonably be said to get me there on time
but I’d have to stay overnight in the airport . . .)
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Probability CalculusMethods for handling uncertainty

Logic-based abductive inference: Default or nonmonotonic logic:
Assume my car does not have a flat tire
Assume A25 works unless contradicted by evidence

Issues: What assumptions are reasonable? How to handle contradiction?

Rules with fudge factors:
A25 7→0.3 AtAirportOnTime
Sprinkler 7→0.99 WetGrass
WetGrass 7→0.7 Rain

Issues: Problems with combination, e.g., Sprinkler causes Rain??

Probability
Given the available evidence,

A25 will get me there on time with probability 0.04
Mahaviracarya (9th C.), Cardano (1565) theory of gambling

(Fuzzy logic handles degree of truth NOT uncertainty e.g.,
WetGrass is true to degree 0.2)
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Probability CalculusProbability

Probabilistic assertions summarize effects of
laziness: failure to enumerate exceptions, qualifications, etc.
ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:
Probabilities relate propositions to one’s own state of knowledge

e.g., P(A25|no reported accidents) = 0.06

These are not claims of a “probabilistic tendency” in the current situation
(but might be learned from past experience of similar situations)
Probabilities of propositions change with new evidence:

e.g., P(A25|no reported accidents, 5 a.m.) = 0.15
(Analogous to logical entailment status KB |= α, not truth.)
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Probability CalculusMaking decisions under uncertainty

Suppose I believe the following:

P(A25 gets me there on time| . . .) = 0.04
P(A90 gets me there on time| . . .) = 0.70

P(A120 gets me there on time| . . .) = 0.95
P(A1440 gets me there on time| . . .) = 0.9999

Which action to choose?

Depends on my preferences for missing flight vs. airport cuisine, etc.
Utility theory is used to represent and infer preferences
Decision theory = utility theory + probability theory
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Probability CalculusInterpretations of Probability

Classical interpretation: probabilities can be determined a priori by an
examination of the space of possibilities.
It assigns probabilities in the absence of any evidence, or in the presence
of symmetrically balanced evidence

Logical interpretation: generalizes the classcial it in two important ways:
possibilities may be assigned unequal weights
probabilities can be computed whatever the evidence may be,
symmetrically balanced or not

Frequentist: the probability of an attribute A in a finite reference class B
is the relative frequency of actual occurrences of A within B.
issue of identity

Propensity interpretation: innate property of the objects

Subjective interpretation: subjective degree of belief + betting system to
avoid unconstrained subjectivism
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Probability CalculusProbability basics
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Probability CalculusProbability basics
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Probability CalculusProbability basics
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Probability CalculusThe three Kolmogorov Axioms

1. The probability of event E in sample space S is between 0 and 1, ie,
0 ≤ p(E ) ≤ 1

2. When the union of all E gives S , p(S) = 1 and p(S̄) = 0

3. The probability of the union of two sets of events A and B is:

p(A ∪ B) = p(A) + p(B)− p(A ∩ B)
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Probability CalculusProbability basics
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Probability CalculusPropositions

Think of a proposition as the event (set of sample points)
where the proposition is true

Given Boolean random variables A and B:
event a = set of sample points where A = true
event ¬a = set of sample points where A = false
event a ∧ b = points where A = true and B = true

Often in AI applications, the sample points are defined
by the values of a set of random variables, i.e., the
sample space is the Cartesian product of the ranges of the variables

With Boolean variables, sample point = propositional logic model
e.g., A = true, B = false, or a ∧ ¬b.

Proposition = disjunction of atomic events in which it is true
e.g., (a ∨ b) ≡ (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ b)
=⇒ P(a ∨ b) = P(¬a ∧ b) + P(a ∧ ¬b) + P(a ∧ b)
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Probability CalculusWhy use probability?

The definitions imply that certain logically related events must have related
probabilities
E.g., P(a ∨ b) = P(a) + P(b)− P(a ∧ b)

>A     B

True

A B

de Finetti (1931): an agent who bets according to probabilities that violate
these axioms can be forced to bet so as to lose money regardless of outcome.
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Probability CalculusSyntax for propositions

Propositional or Boolean random variables
e.g., Cavity (do I have a cavity?)
Cavity = true is a proposition, also written cavity

Discrete random variables (finite or infinite)
e.g., Weather is one of 〈sunny , rain, cloudy , snow〉
Weather = rain is a proposition
Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)
e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.
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Probability CalculusPrior probability

Prior or unconditional probabilities of propositions
e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72

correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
P(Weather) = 〈0.72, 0.1, 0.08, 0.1〉 (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the
probability of every atomic event on those r.v.s (i.e., every sample point)

P(Weather ,Cavity) = a 4× 2 matrix of values:

Weather = sunny rain cloudy snow
Cavity = true 0.144 0.02 0.016 0.02
Cavity = false 0.576 0.08 0.064 0.08

Every question about a domain can be answered by the joint
distribution because every event is a sum of sample points
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Probability CalculusProbability for continuous variables

Express distribution as a parameterized function of value:
P(X = x) = U[18, 26](x) = uniform density between 18 and 26

0.125

dx18 26

Here P is a density; integrates to 1.
P(X = 20.5) = 0.125 really means

lim
dx→0

P(20.5 ≤ X ≤ 20.5 + dx)/dx = 0.125
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Probability CalculusGaussian density

P(x) = 1√
2πσ

e−(x−µ)2/2σ2

0
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Probability CalculusConditional probability

Conditional or posterior probabilities
e.g., P(cavity |toothache) = 0.8
i.e., given that toothache is all I know
NOT “if toothache then 80% chance of cavity ” (Notation for conditional

distributions:
P(Cavity |Toothache) = 2-element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have
P(cavity |toothache, cavity) = 1

Note: the less specific belief remains valid after more evidence arrives, but is
not always useful

New evidence may be irrelevant, allowing simplification, e.g.,
P(cavity |toothache, 49ersWin) = P(cavity |toothache) = 0.8

This kind of inference, sanctioned by domain knowledge, is crucial
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Probability CalculusConditional probability

Definition
Conditional probability:

P(a|b) =
P(a ∧ b)

P(b)
if P(b) 6= 0

Product rule gives an alternative formulation:
P(a ∧ b) = P(a|b)P(b) = P(b|a)P(a)

A general version holds for whole distributions, e.g.,
P(Weather ,Cavity) = P(Weather |Cavity)P(Cavity)

(View as a 4× 2 set of equations, not matrix mult.)

Definition
Chain rule is derived by successive application of product rule:

P(X1, . . . ,Xn) = P(X1, . . . ,Xn−1) P(Xn|X1, . . . ,Xn−1)
= P(X1, . . . ,Xn−2) P(Xn−1|X1, . . . ,Xn−2) P(Xn|X1, . . . ,Xn−1)
= . . .

= Π
n

i = 1P(Xi |X1, . . . ,Xi−1)
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Probability CalculusInference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:

P(φ) = Σω:ω|=φP(ω)
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Probability CalculusInference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:

P(φ) = Σω:ω|=φP(ω)
P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Probability CalculusInference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:

P(φ) = Σω:ω|=φP(ω)
P(cavity ∨ toothache) = 0.108+0.012+0.072+0.008+0.016+0.064 = 0.28
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Probability CalculusInference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

Can also compute conditional probabilities:

P(¬cavity |toothache) =
P(¬cavity ∧ toothache)

P(toothache)

=
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4
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Probability CalculusNormalization

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

Denominator can be viewed as a normalization constant α

P(Cavity |toothache) = αP(Cavity , toothache)

= α [P(Cavity , toothache, catch) + P(Cavity , toothache,¬catch)]

= α [〈0.108, 0.016〉+ 〈0.012, 0.064〉]
= α 〈0.12, 0.08〉 = 〈0.6, 0.4〉

General idea: compute distribution on query variable
by fixing evidence variables and summing over hidden variables
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Probability CalculusInference by enumeration, contd.

Let X be all the variables. Typically, we want
the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E

Let the hidden variables be H = X− Y− E

Then the required summation of joint entries is done by summing out the
hidden variables:

P(Y|E= e) = αP(Y,E= e) = α
∑
h

P(Y,E= e,H=h)

The terms in the summation are joint entries because Y, E, and H together
exhaust the set of random variables

Obvious problems:
1) Worst-case time complexity O(dn) where d is the largest arity
2) Space complexity O(dn) to store the joint distribution
3) How to find the numbers for O(dn) entries???
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Probability CalculusProbability basics
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Probability CalculusIndependence

A and B are independent iff
P(A|B) =P(A) or P(B|A) =P(B) or P(A,B) =P(A)P(B)

Weather

Toothache Catch

Cavity decomposes into

Weather

Toothache Catch
Cavity

P(Toothache,Catch,Cavity ,Weather)
= P(Toothache,Catch,Cavity)P(Weather)

32 entries reduced to 12; for n independent biased coins, 2n → n

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables,
none of which are independent. What to do?
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Probability CalculusConditional independence

P(Toothache,Cavity ,Catch) has 23 − 1 = 7 independent entries

If I have a cavity, the probability that the probe catches in it doesn’t depend
on whether I have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven’t got a cavity:
(2) P(catch|toothache,¬cavity) = P(catch|¬cavity)

Catch is conditionally independent of Toothache given Cavity :
P(Catch|Toothache,Cavity) = P(Catch|Cavity)

Equivalent statements:
P(Toothache|Catch,Cavity) = P(Toothache|Cavity)
P(Toothache,Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
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