Course Overview

2

4

Lecture 8 Uncertainty Marco Chiarandini	 Introduction Artificial Intelligence Intelligent Agents Search Uninformed Search Heuristic Search 	 Uncertain knowledge and Reasoning Probability and Bayesian approach Bayesian Networks Hidden Markov Chains 	
Deptartment of Mathematics & Computer Science University of Southern Denmark Slides by Stuart Russell and Peter Norvig	 Adversarial Search Minimax search Alpha-beta pruning Knowledge representation and Reasoning Propositional logic First order logic Inference 	 Kalman Filters Learning Decision Trees Maximum Likelihood EM Algorithm Learning Bayesian Networks Neural Networks Support vector machines 	
Probability Calculus	Outline	Probability Calculus	

First-order logic:

Summary

- objects and relations are semantic primitives

- syntax: constants, functions, predicates, equality, quantifiers Increased expressive power: sufficient to define wumpus world

Situation calculus:

- conventions for describing actions and change in FOL
- can formulate planning as inference on a situation calculus KB

1. Probability Calculus

3

 \diamond Uncertainty

 \Diamond Probability

 \diamond Inference

♦ Syntax and Semantics

♦ Independence and Bayes' Rule

Let action A_t = leave for airport t minutes before flight Will A_t get me there on time?

Problems:

Uncertainty

- 1) partial observability (road state, other drivers' plans, etc.)
- 2) noisy sensors (KCBS traffic reports)
- 3) uncertainty in action outcomes (flat tire, etc.)
- 4) immense complexity of modelling and predicting traffic

Hence a purely logical approach either

- 1. risks falsehood: " A_{25} will get me there on time"
- leads to conclusions that are too weak for decision making:
 "A₂₅ will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

 $(A_{1440} \text{ might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)$

Methods for handling uncertainty

Probability Calculus

5

7

Logic-based abductive inference: Default or nonmonotonic logic: Assume my car does not have a flat tire Assume A₂₅ works unless contradicted by evidence Issues: What assumptions are reasonable? How to handle contradiction?

Rules with fudge factors:

 $A_{25} \mapsto_{0.3} AtAirportOnTime$ $Sprinkler \mapsto_{0.99} WetGrass$ $WetGrass \mapsto_{0.7} Rain$ Issues: Problems with combination, e.g., Sprinkler causes Rain??

Probability

Given the available evidence, A_{25} will get me there on time with probability 0.04 Mahaviracarya (9th C.), Cardano (1565) theory of gambling

(Fuzzy logic handles **degree of truth** NOT uncertainty e.g., *WetGrass* is true to degree 0.2)

Probability

Probability Calculus

6

8

Probabilistic assertions **summarize** effects of laziness: failure to enumerate exceptions, qualifications, etc. ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability: Probabilities relate propositions to one's own state of knowledge e.g., $P(A_{25}|\text{no reported accidents}) = 0.06$

These are **not** claims of a "probabilistic tendency" in the current situation (but might be learned from past experience of similar situations) Probabilities of propositions change with new evidence:

e.g., $P(A_{25}|\text{no reported accidents}, 5 \text{ a.m.}) = 0.15$ (Analogous to logical entailment status $KB \models \alpha$, not truth.)

Making decisions under uncertainty

 $P(A_{25} \text{ gets me there on time}|...) = 0.04$ $P(A_{90} \text{ gets me there on time}|...) = 0.70$

 $P(A_{120} \text{ gets me there on time}|...) = 0.95$

 $P(A_{1440} \text{ gets me there on time}|...) = 0.9999$

Utility theory is used to represent and infer preferences Decision theory = utility theory + probability theory

Depends on my preferences for missing flight vs. airport cuisine, etc.

Probability Calculus

- Classical interpretation: probabilities can be determined a priori by an examination of the space of possibilities. It assigns probabilities in the absence of any evidence, or in the presence of symmetrically balanced evidence
- Logical interpretation: generalizes the classcial it in two important ways:
 - possibilities may be assigned unequal weights

Interpretations of Probability

- probabilities can be computed whatever the evidence may be, symmetrically balanced or not
- Frequentist: the probability of an attribute A in a finite reference class B is the relative frequency of actual occurrences of A within B. issue of identity
- Propensity interpretation: innate property of the objects
- Subjective interpretation: subjective degree of belief + betting system to avoid unconstrained subjectivism

Probability basics

Suppose I believe the following:

Which action to choose?

Probability Calculus

9

DEFINITION

ELEMENTARY EVENT

An *elementary* or *atomic event* is a happening or occurrence that cannot be made up of other events.

EVENT, E

An event is a set of elementary events.

SAMPLE SPACE, S

The set of all possible outcomes of an event E is the *sample space* S or *universe* for that event.

PROBABILITY, p

The *probability* of an event E in a sample space S is the ratio of the number of elements in E to the total number of possible outcomes of the sample space S of E. Thus, p(E) = |E| / |S|.

Probability basics

Probability Calculus

10

The probability of any event E from the sample space S is: $0 \le p(E) \le 1$, where $E \subseteq S$

The sum of the probabilities of all possible outcomes is 1

The probability of the complement of an event is

 $p(\overline{E}) = (|S| - |E|) / |S| = (|S| / |S|) - (|E| / |S|) = 1 - p(E).$

The probability of the contradictory or false outcome of an event

 $p(\{ \}) = 1 - p(\overline{\{ \}}) = 1 - p(S) = 1 - 1 = 0$, or alternatively, = $|\{ \}| / |S| = 0 / |S| = 0$ Probability Calculus

The three Kolmogorov Axioms

DEFINITION

INDEPENDENT EVENTS

Two events A and B are *independent* if and only if the probability of their both occurring is equal to the product of their occurring individually. This independence relation is expressed:

 $p(A \cap B) = p(A) * p(B)$

We sometimes use the equivalent notation p(s,d) for $p(s \cap d)$. We clarify the notion of independence further in the context of conditional probabilities in Section 5.2.4.

- 1. The probability of event *E* in sample space *S* is between 0 and 1, ie, $0 \le p(E) \le 1$
- 2. When the union of all *E* gives *S*, p(S) = 1 and $p(\overline{S}) = 0$
- 3. The probability of the union of two sets of events A and B is:

$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

13

Probability basics

Probability Calculus

DEFINITION

RANDOM VARIABLE

A *random variable* is a function whose domain is a sample space and range a set of outcomes, most often real numbers. Rather than using a problem-specific event space, a random variable allows us to talk about probabilities as numerical values that are related to an event space.

BOOLEAN, DISCRETE, and CONTINUOUS RANDOM VARIABLES

A *boolean random variable* is a function from an event space to $\{true, false\}$ or to the subset of real numbers $\{0.0, 1.0\}$. A boolean random variable is sometimes called a *Bernoulli trial*.

A *discrete random variable*, which includes boolean random variables as a subset, is a function from the sample space to (a countable subset of) real numbers in [0.0, 1.0].

A continuous random variable has as its range the set of real numbers.

Propositions

Probability Calculus

14

Think of a proposition as the event (set of sample points) where the proposition is true

```
Given Boolean random variables A and B:
```

event a = set of sample points where A = trueevent $\neg a = \text{set of sample points where } A = false$ event $a \land b = \text{points where } A = true$ and B = true

Often in AI applications, the sample points are **defined** by the values of a set of random variables, i.e., the sample space is the Cartesian product of the ranges of the variables

With Boolean variables, sample point = propositional logic model e.g., A = true, B = false, or $a \land \neg b$. Proposition = disjunction of atomic events in which it is true e.g., $(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$ $\implies P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b)$

Why use probability?

Probability Calculus

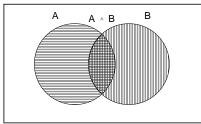
Syntax for propositions

Probability Calculus

The definitions imply that certain logically related events must have related probabilities

E.g., $P(a \lor b) = P(a) + P(b) - P(a \land b)$

True



de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.

Prior probability

Probability Calculus

Prior or unconditional probabilities of propositions e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments: $P(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle$ (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s (i.e., every sample point) $P(Weather, Cavity) = a 4 \times 2$ matrix of values:

W eather =	sunny	rain	cloudy	snow
<i>Cavity</i> = <i>true</i>				
<i>Cavity</i> = <i>false</i>	0.576	0.08	0.064	0.08

Every question about a domain can be answered by the joint distribution because every event is a sum of sample points

Propositional or Boolean random variables e.g., *Cavity* (do I have a cavity?) *Cavity* = true is a proposition, also written *cavity*

Discrete random variables (finite or infinite) e.g., Weather is one of (sunny, rain, cloudy, snow) Weather = rain is a proposition Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded) e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.

Probability Calculus

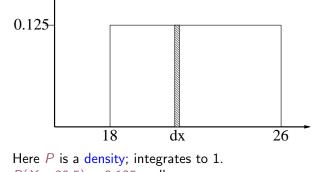
18

. Calaulua

17

Probability for continuous variables

Express distribution as a parameterized function of value: P(X = x) = U[18, 26](x) = uniform density between 18 and 26

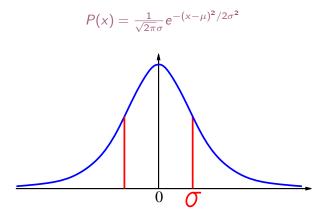


P(X = 20.5) = 0.125 really means

 $\lim_{dx \to 0} P(20.5 \le X \le 20.5 + dx)/dx = 0.125$

Probability Calculus

Conditional probability



Conditional or posterior probabilities e.g., *P*(*cavity*|*toothache*) = 0.8 i.e., **given that** *toothache* **is all I know NOT** "if *toothache* then 80% chance of *cavity*" (Notation for conditional distributions:

P(*Cavity* | *Toothache*) = 2-element vector of 2-element vectors)

If we know more, e.g., *cavity* is also given, then we have P(cavity|toothache, cavity) = 1Note: the less specific belief **remains valid** after more evidence arrives, but is not always **useful**

New evidence may be irrelevant, allowing simplification, e.g., P(cavity|toothache, 49ersWin) = P(cavity|toothache) = 0.8This kind of inference, sanctioned by domain knowledge, is crucial

21

Probability Calculus

Conditional probability

Definition

Conditional probability:

$$P(a|b) = rac{P(a \wedge b)}{P(b)}$$
 if $P(b) \neq 0$

Product rule gives an alternative formulation: $P(a \land b) = P(a|b)P(b) = P(b|a)P(a)$

A general version holds for whole distributions, e.g., P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)(View as a 4 × 2 set of equations, not matrix mult.)

Definition

Chain rule is derived by successive application of product rule: $\mathbf{P}(X_1, \dots, X_n) = \mathbf{P}(X_1, \dots, X_{n-1}) \mathbf{P}(X_n | X_1, \dots, X_{n-1}) \\
= \mathbf{P}(X_1, \dots, X_{n-2}) \mathbf{P}(X_{n-1} | X_1, \dots, X_{n-2}) \mathbf{P}(X_n | X_1, \dots, X_{n-1}) \\
= \dots \\
= \prod_{i=1}^n \mathbf{P}(X_i | X_1, \dots, X_{i-1})$

Inference by enumeration

Probability Calculus

22

Start with the joint distribution:

	toothache		\neg toothache	
	$catch \neg catch$		catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

Inference by enumeration

Probability Calculus

Inference by enumeration

Start with the joint distribution:

	toothache		⊐ toothache	
	$catch \neg catch$		catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition $\phi,$ sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Start with the joint distribution:

	toothache		\neg toothache	
	$catch \neg catch$		catch	\neg catch
cavity	.108	.012	.072	.008

For any proposition ϕ , sum the atomic events where it is true: $P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$ $P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$

25

Probability Calculus

Inference by enumeration

Start with the joint distribution:

	toothache		⊐ toothache	
	$catch \neg catch$		catch	\neg catch
cavity	.108	.012	.072	.008
⊐ cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

 $P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$ $= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$

Normalization

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Denominator can be viewed as a normalization constant α

- $\mathbf{P}(Cavity | toothache) = \alpha \mathbf{P}(Cavity, toothache)$
 - $= \alpha [P(Cavity, toothache, catch) + P(Cavity, toothache, \neg catch)]$
 - $= \alpha \left[\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle \right]$
 - $= \alpha \langle 0.12, 0.08 \rangle = \langle 0.6, 0.4 \rangle$

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Probability Calculus

26

28

Inference by enumeration, contd.

Probability Calculus

Probability basics

Let X be all the variables. Typically, we want the posterior joint distribution of the query variables Y given specific values e for the evidence variables E Let the hidden variables be H = X - Y - E

Then the required summation of joint entries is done by summing out the hidden variables:

$$P(Y|E=e) = \alpha P(Y, E=e) = \alpha \sum P(Y, E=e, H=h)$$

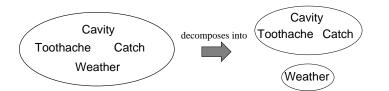
The terms in the summation are joint entries because Y, E, and H together exhaust the set of random variables

Obvious problems:

- 1) Worst-case time complexity $O(d^n)$ where d is the largest arity
- 2) Space complexity $O(d^n)$ to store the joint distribution
- 3) How to find the numbers for $O(d^n)$ entries???

Independence

A and B are independent iff $\mathbf{P}(A|B) = \mathbf{P}(A)$ or $\mathbf{P}(B|A) = \mathbf{P}(B)$ or $\mathbf{P}(A, B) = \mathbf{P}(A)\mathbf{P}(B)$



- P(Toothache, Catch, Cavity, Weather) = P(Toothache, Catch, Cavity)P(Weather)
- 32 entries reduced to 12; for *n* independent biased coins, $2^n \rightarrow n$

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

DEFINITION

INDEPENDENT EVENTS

Two events A and B are *independent* of each other if and only if $p(A \cap B) = p(A) p(B)$. When $p(B) \neq 0$ this is the same as saying that p(A) = p(A|B). That is, knowing that B is true does not affect the probability of A being true.

CONDITIONALLY INDEPENDENT EVENTS

Two events A and B are said to be *conditionally independent* of each other, given event C if and only if $p((A \cap B) | C) = p(A | C) p(B | C)$.

Probability Calculus

30

Probability Calculus

29

Conditional independence

P(Toothache, Cavity, Catch) has $2^3 - 1 = 7$ independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven't got a cavity: (2) $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$

- Catch is conditionally independent of Toothache given Cavity: P(Catch|Toothache, Cavity) = P(Catch|Cavity)
- Equivalent statements:

P(Toothache|Catch, Cavity) = P(Toothache|Cavity) P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)