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Exercise 1 — Building Models
Construct a graphical model representing the following situation:

Milk from a cow may be infected. To detect whether the milk is infected, you
have a test, which may give either a positive or a negative test result. The
test is not perfect. It may give a positive result on clean milk as well as a
negative result on infected milk.

From one day to another, the state of the milk can change. Cows with in-
fected milk will heal over time, and a clean cow has a risk of having infected
milk the next day. Now, imagine that the farmer performs the test each day.
After a week, he has not only the current test result but also the six previous
test results.

It is good to have as a rule that no test is perfect. Unless you explicitly
know otherwise, a test should always be given a positive probability of false
positives as well as false negatives.

Solution

Exercise 2 — Building Models
Represent with a graphical model the possible types of failures that may incurr in this
example:

Consider an HIV test with a probability of false positives of 107, and assume
that a person has received a positive test result. Now, you may have the
option of repeating the test, but will this be of any help?

Exercise 3 — Sequential data

Every day that he leaves work, Albert the Absent-minded Professor, toggles his light
switch according to the following protocol: (i) if the light is on, he switches it off with
probability 0.80; and (ii) if the light is off, he switches it on with probability 0.30. At no
other time (other than the end of each day) is the light switch touched.

1. Suppose that on Monday night, Albert’s office is equally likely to be light or dark.

What is the probability that his office will be lit all the other four nights of the
week (Tuesday through Friday)?

Solution 1 - (0.2)°+1-0.3-(0.2)* =4-107%
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2. Suppose that you observe that his office is lit on both Monday and Friday nights.
Compute the expected number of nights, from that Monday through Friday, that
his office is lit.

Solution Let X, be 1 if light is on that night and o if it is off. Then number of

nights that the office is lit is Xyon + Xtue + Xwea + Xinu + Xpri = 2+ Xive + Xpea +
Xipu, since we know that the light is on both Monday and Friday nights. We take
the expectation of this quantity with respect to distribution of Xye, Xeped, Xinu| Xmon =
1, X = 1. Note that

p(XtuE/ Xeveds Xthus Xfri = 1‘Xmon = 1)
p(Xfri = 1‘Xmon = 1) ’

p(Xtue/ Xwed/ Xthu|Xmon =1, Xfri = 1) =

which we can in turn re-write as:

P(Xtue/ Xuwedr Xthus Xfri = 1’Xmon = 1)
ZXtuf,Xwgd,Xm P(Xtuez Xoeds Xthur Xfri - 1‘Xmon = 1) ’

There are only 8 terms to calculate under this distribution (since each of X, Xued, Xinu
is binary): one such term is P(Xje = 0, Xyed = 0, Xppuy = 0, Xpri = 1| Xpon = 1) =
0.8 x 0.7 x 0.7 x 0.3 = 0.1176. We then normalize all terms by their sum so get
probabilities under distribution conditional on light being on both monday and
friday nights and calculate expectation of the sum under this distribution, yield-
ing 2.69 nights.

Now suppose that Albert has been working for five years (i.e., assume that the Markov
chain is in steady state).

3. Is his light more likely to be on or off at the end of a given workday?

Solution We first calculate the stationary distribution, defined by

[ Pon ] _ [0.2 0.3] [ Pon ]

poff 0.8 0.7 poff

This yields long run probabilites that the light is on or off on any given day as 0.2y
and o.73, respectively. Hence, the light is more likely to be off.

Exercise 4 — Bayesian Networks — Practical

There are many software for dealing with probabilistic graphical models. They differ in
many characteristics, among the others, tasks and formal language. The following is an
incomplete list:

e Hugin: a commercial system made in Denmark

e OpenBugs: Bayesian inference Using Gibbs Sampling. The package BRugs allows
OpenBUGS analyses to be run fully interactively from within R.

e Mallet (MAchine Learning for LanguagE Toolkit) is a Java-based package for sta-
tistical natural language processing in document classification.
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e Bayes Net package in Weka: implements various Bayesian network classifier learn-

ing algorithms.

e In R under the CRAN Task View, gR Graphical Models Task lists all packages for

graphical models. Among them deal.

In the following it is reported an example in deal. Carry out, if possible, the same

analysis in BRugs.

data(ksl)
7ksl

head (ksl)
str(ksl)
summary (ksl)

# define the nodes and type of variables corresponding to them

# in the Bayesian network
(nw <- network(ksl)) # network does not use the data

## Attach prior independent probability distributions
localprob(aw,"FEV") <- c(179,80)

localprob(aw, "Kol") <- c(691,80)

localprob(aw, "Hyp") <- c(0.55,80)

localprob(nw, "logBMI") <- ¢(3.23,80)

localprob(nw, "Smok") <- c(0.5,0.5)
localprob(naw,"Alc") <- c(0.5,0.5)
localprob(aw,"Work") <- ¢(0.5,0.5)
localprob(aw,"Sex") <- ¢(0.5,0.5)
localprob(aw,"Year") <- c(0.5,0.5)

plot(nw) # plots the network. No arc are yet defined

# learn the probabilities from data
fit.prior <- jointprior (nw)

fit.learn <- learn(uw, ksl, fit.prior)
fit.nw <- getnetwork(fit.learn)

print(fit.nw, condposterior=TRUE)
plot(fit.nw)

# learn the conditional independency structure
fit.arcs <- getnetwork(autosearch(fit.nw,ksl,fit.prior))

print(fit.arcs, condposterior=TRUE)
# Alternatively, draw the arcs yourself
draw.nw <- getnetwork(drawnetwork(nw,ksl,fit.prior))

plot(draw.nw)

# PriorSampling or ancestral sampling from the network
rnetwork (makesimprob(fit.arcs) ,n=10)
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Exercise 5 — Hidden Markov Models — Practical.
Consider the following example from [B3]. Your teacher wants to know whether or not
you are actually preparing for the exam. There are four things you can be do on evenings
{pub, TV, party, study} and he wants to work out whether or not you are studying.
However, he cannot just ask you but he can make observations about your behavior and
appearance. Specifically, he can observe if you look {Tired, Hungover, Scared, Fine}.
He cannot know why you look the way you look but he has a probabilistic model to
infer what is the probability that you look the way you look given what you did the last
night. These probabilities are collected in an emission probability table.
The other information he uses are the probabilities that you are in a state tonight given
that you were in another state the last night. These probabilities are collected in a
transition probability table.
On the basis of his experience as a student he makes the following guesses on the
probability tables: for the transition probabilities
Previous night
TV Pub Party Study

TV 0.4 0.6 0.7 0.3

Pub 0.3 0.05  0.05 0.4

Party 01 01 0.05 0.25

Study 0.2 o0.25 0.2  0.05
and for the observation probabilities:

TV Pub Party Study

Tired 0.4 0.6 0.7 0.3
Hungover 0.3 0.05 0.05 0.4
Scared 0.1 0.1  0.05 0.25
Fine 0.2 0.25 0.2 0.05

After one week your teacher has collected the following observations (Tired, Tired, Hun-
gover, Hungover, Scared, Hungover, Fine) and there are three things that he might want
to do with these data:

e see how well the sequence of observations that he has made match his current
probability tables, ie, what is the probability of that joint outcome of observations
given his model.

e work out the most probable sequence of states that you have been in based on his
observations.

e given several sets of observations (for example, by watching several students) gen-
erate a good model from the data.

Write these questions in the formal way of probability calculus. Describe the algorithmic
issues for answering them. Carry out the computations in R using one of the two
packages above.

Below are the data ready to be imported in R. They include the probability of the initial
and final states, the tables above and the observations.

aFirst <- ¢(0.25,0.25,0.25,0.25)
alLast <- ¢(0.25,0.25,0.25,0.25)
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a <- matrix(c(.4,.3,.1,.2,.6,.05,.1,.25,.7,.05,.05,.2,.3,.4,.25,.05) ,ncol
=4 ,byrow=FALSE)

b <- matrix(c(.2,.1,.2,.5,.4,.2,.1,.3,.3,.4,.2,.1,.3,.05,.3,.35) ,ncol=4,
byrow=FALSE)

obs <- ¢(0,0,3,1,1,2,1,3)

HMMfwd (a,b,obs)
Viterbi(a,b,obs)
ViterbiSimple(a,b,obs)
BaumWelch(obs,4)
ViterbiSimple(a,b,obs)

There are several packages in R that implement Hidden Markov Models. Among them
HMM is a simple implementation for discrete state and discrete space (ie, emission dis-
tribution). The package HiddenMarkov is a more general implementation that allows to
declare the emission distribution for continuous and discrete variables.

Install and explore the possibilities of the two packages.

library (HMM)
7?dishonestCasino
dishonestCasino ()

library(HybridMarkov)

?HybridMarkov

?dthmm

demo ("norm" ,package="HiddenMarkov")

e Forward algorithms are used for computing the conditional probability for a se-
quence of observations. It can tell how well a sequence of observations match
with the current HMM.

e Viterbi algorithm work out the most probable sequence of states (latent variables)
that match the observations

e Baum-Welch or Forward-Backward algorithm estimates (learns) the parameters of the
transition and emission probabilities from the data given several sets of observa-
tions. It consists in an implementation of the EM algorithm together with the
sum-product algorithm studied for polytrees.



