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Exercise 1
Do exercises 1, 4, 5 from Exam 2010.

Solution

Jb =
m

∑
j=1

wb
j I{h(xj; θ) 6= yj}

For A Jb = 0.06, for B Jb = 0.05 for C Jb = 0.5. Hence B is the best model.

Solution The question is unclear since h(·) is not defined. Using the definition from

AdaBoost: the prediction is computed by sign
(

∑B
b=1 αbhb(x)

)
. We can use:

h(x) = sign (αAhA(x) + αChc(x))

the values of α are given by:

εb =
∑m

i=1 wb
i I
{

hb(xi) 6= yi}
∑i wb

i
αb = ln

1− εb

εb

from which we get αA = 2.7 and αC = 0. Hence the prediction will be the same as for A
and wrong in c and d.
Alternatively we assume:

h(x) = sign (hA(x) + hc(x))

and get wrong predictions for b, c, d.

Solution We represent an observation of X1 by a binary vector x1 with ∑5
k=1 x1k = 1.

Further, let p(X1 = x1k) = θ1k with ∑5
k=1 θ1k = 1. Then, the distribution of X1 is a

generalization of the Bernoulli distribution:

p(X1 = xk|θ1) =
5

∏
k=1

θx1k
1k (1)

Similarly for X2|X1 we represent an observation of X2 by a binary vector x2k with
∑3

l=1 x2kl = 1 and p(X2 = x2kl |X1 = x1k) = θ2kl with ∑3
l=1 θ2kl = 1.

p(X2 = xl |X1 = xk, θ2k) =
3

∏
l=1

θx2kl
2kl (2)

Solution P(X2 = linkern|X1 = nn,D) = ∏5
j=1 θ

xj
2kl

2kl . To estimate θ2kl we write the joint
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likelihood and use factorization

L(θ) =
5

∏
j=1

P(X j
2 = x2, X j

1 = x1) (3)

=
5

∏
j=1

P(X j
2 = x2|X j

1 = x1)P(X j
1 = x) (4)

=
5

∏
j=1

5

∏
k=1

3

∏
l=1

θ
xj

2kl
2kl θ

xj
1k

1k (5)

Then we maximize in θ with the additional constraint that ∑l θ2kl = 1, which we La-
grange relax:

L′(θ) = `(θ) + λ ∑
l
(θ2kl − 1) (6)

= log
5

∏
j=1

5

∏
k=1

3

∏
l=1

θ
xj

2kl
2kl θ

xj
1k

1k + λ ∑
l
(θ2kl − 1) (7)

=
5

∑
j=1

xj
2kl log θ2kl +

5

∑
j=1

xj
1k log θ1k + λ ∑

l
(θ2kl − 1) (8)

∂L(θ)
∂θ2kl

=
5

∑
j=1

xj
2kl

1
θ2kl

+ λθ2kl = 0 (9)

Solution This corresponds to P(X2 = nearest insertion, X1 = nn|D) that we can
estimate as in the previous point giving 0.
The problem is that with max likelihood we are overfitting. Laplace smoothing could
help.

Solution

p(X1 = xk) = θ1k (10)

p(θ1|α1) = Dirichlet(θ1k|α1) =
Γ(α10)

Γ(α11) · · · Γ(α15)

K

∏
k=1

θα1k−1
k (11)

where α0 = ∑K
k=1 αk. Similarly,

p(X2 = xl |X1 = xk) = θ2kl (12)
p(θ2k|α2k) = Dirichlet(θ2k|α2k) (13)

Solution A uniform initial local prior means that all hyperparameters are equal to 1. In
general, for θ = [θ1, . . . , θk]

T ∼ Dir(α)

E[θi] =
αi

∑k
i=1 αi
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In our case, we first calculate the posterior probability

p(θ2kl |D) =
p(D|θ2kl)p(θ2kl)

p(D) (14)

= Dir(θ2kl |α2k + m2k) (15)

=
Γ(α2k0 + N)

Γ(α2k1 + m2k1) · · · Γ(α2k3 + m2k3)

3

∏
l=1

θα2kl+m2kl−1
2kl (16)

where we have denoted m2k = [m2k1, . . . , m2k3]
T, the number of observations of x2kl and

N = ∑l m2kl . Then we calculate P(X2 = x1l |X1 = x1k,D) by marginalizing over the
parameter θ2kl . This will give us the expected value of θ2kl with respect to its Dirichelet
distribution:

P(X2 = x1l |X1 = x1k,D) =
∫ +∞

−∞
P(X2 = x2l |X1 = x1k, θ2klD)p(θ2kl |D)dθ2kl (17)

= Ep(θ2kl |D)[θ2kl |D] (18)

=
α2kl + m2kl

∑l α2kl + N
(19)

=
1 + 2
3 + 2

=
3
5
= 0.6 (20)

Solution
We need to compute the joint probability distribution P(X1, X2)

P(X1 = x1k, X2 = x2l |D) = P(X2 = x2l |X1 = x1k,D)P(X1 = x1k|D) (21)
= Ep(θ2kl |D)[θ2kl |D]Ep(θ1k |D)[θ1k|D] (22)

=
α2kl + m2kl

∑l α2kl + N2

α1k + m1k

∑k α1k + N1
(23)

Thus,

p(arbitrary insertion-linkern) =
1 + 3
3 + 3

· 1 + 3
5 + 5

=
4
6

4
10

= 0.266 (24)

p(nn-linkern) =
1 + 2
3 + 2

· 1 + 2
5 + 5

=
3
5

3
10

= 0.180 (25)

p(arbitrary insertion-none) =
1 + 0
3 + 3

· 1 + 3
5 + 5

=
1
6

4
10

= 0.066 (26)

p(farthest insertion-linkern) =
1 + 0
3 + 0

· 1 + 0
5 + 5

=
1
3

1
10

= 0.033 (27)

... (28)

Solution

p(X2 = x2l |D) = ∑
k

P(X2 = x2l |X1 = x1k,D)P(X1 = x1k|D) (29)

= ∑
k

Ep(θ2kl |D)[θ2kl |D]Ep(θ1k |D)[θ1k|D] (30)

= ∑
k

α2kl + m2kl

∑l α2kl + N2

α1k + m1k

∑k α1k + N1
(31)
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Solution

Solution The likely states we can get to at t = 3 are x3 = 2 and x3 = 3. The other state
sequences will have probability at most 10−9. The mean µ3 is closer to the observation
point thus favoring the state sequence that ends up in x3 = 3. This is x1 = 1, x2 = 2, x3 =
3.

Solution Roughly, the max probability to these points (could be derived efficiently via
max sum algorithm) is:

p(y3|X3 = 3)p(X3 = 3|X2 = 2)p(X2 = 2|X1 = 1)p(X1 = 1) = p3 · 1 · 1 · 0.5

p(y3|X3 = 4)p(X3 = 4|X2 = 3)p(X2 = 3|X1 = 2)p(X1 = 2) = p4 · 1 · 1 · 10−9

hence if σ2 becomes such that p3 · 0.5 < p4 · 10−9 then the state sequence that ends up in
x3 = 4 (x1 = 2, x2 = 3, x4 = 4) will become the most likely state sequence.

Exercise 2 – Tree based methods
Consider a data set comprising 400 data points from class C1 and 400 data points from
class C2. Suppose that a tree model A splits these into (300,100) assigned to the first
leaf node (predicting C1 and (100,300) assigned to the second leaf node (predicting C2,
where (n, m) denotes that n points come from class C1 and m points come from class
C2. Similarly, suppose that a second tree model B splits them into (200,400) and (200,0),
respectively. Evaluate the misclassification rates for the two trees and show that they
are equal. Similarly, evaluate the pruning criterion for the cross-entropy case for the two
trees.

Exercise 3 – Tree based methods
You are given the following data points: Negative: (-1, -1) (2, 1) (2, -1); Positive: (-2, 1)
(-1, 1) (1,-1). The points are depicted in Figure 1.

1. Construct a decision tree using the greedy recursive bi-partitioning algorithm
based on information gain described in class. Use both criteria the Gini index
and the entropy. In the search for the split threshold θ discretize the continue scale
of the two features and consider only values in {−1.5, 0, 1.5} for f1 and {0} for f2.
Represent graphically the tree constructed and draw the decision boundaries in
the Figure 1. Table 1 might be useful for some computations

2. Use the tree to predict the outcome for the new point (1,1).

Exercise 4 – Nearest Neighbor
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x y −(x/y) · log(x/y) x y −(x/y) · log(x/y)
1 2 0.50 1 5 0.46

1 3 0.53 2 5 0.53

2 3 0.39 3 5 0.44

1 4 0.50 4 5 0.26

3 4 0.31

Table 1: Numerical values for the computation of information gains.

1. Draw the decision boundaries for 1-Nearest Neighbor on the Figure 1. Make it
accurate enough so that it is possible to tell whether the integer-valued coordinate
points in the diagram are on the boundary or, if not, which region they are in.

2. What class does 1-NN predict for the new point: (1, 1).

3. What class does 3-NN predict for the new point: (1, 0).

Exercise 5 – Practical
Analyze by means of classification tree the data on spam email from the UCI repository.
Use rpart from the rpart package and the ctree from the party package.

Exercise 6 – PCA
Using the iris data readily available in R use principle component analysis to identify
two components and plot the data in these components. Can you classify the data at
this stage?

Exercise 7 – Probability and Independence
A joint probability table for the binary variables A, B, and C is given below.

A / B b1 b2

a1 (0.006, 0.054) (0.048, 0.432)
a2 (0.014, 0.126) (0.032, 0.288)

Table 2: Joint probability distribution P(A, B, C)

• Calculate P(B, C) and P(B).

• Are A and C independent given B? (Remember to report the justification of your
answer.)
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Figure 1: The data points for classification.
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