DM825 - Introduction to Machine Learning

Sheet 14, Spring 2013

Exercise 1

Do exercises 1, 4, 5 from Exam 2010.

Solution

$$
J_{b}=\sum_{j=1}^{m} w_{j}^{b} I\left\{h\left(\mathbf{x}_{j} ; \theta\right) \neq y_{j}\right\}
$$

For A $J_{b}=0.06$, for B $J_{b}=0.05$ for C $J_{b}=0.5$. Hence B is the best model.
Solution The question is unclear since $h(\cdot)$ is not defined. Using the definition from AdaBoost: the prediction is computed by $\operatorname{sign}\left(\sum_{b=1}^{B} \alpha_{b} h_{b}(\mathbf{x})\right)$. We can use:

$$
h(\mathbf{x})=\operatorname{sign}\left(\alpha_{A} h_{A}(\mathbf{x})+\alpha_{C} h_{c}(\mathbf{x})\right)
$$

the values of α are given by:

$$
\epsilon_{b}=\frac{\sum_{i=1}^{m} w_{i}^{b} I\left\{h_{b}\left(\mathbf{x}^{i}\right) \neq y^{i}\right\}}{\sum_{i} w_{i}^{b}} \quad \alpha_{b}=\ln \frac{1-\epsilon_{b}}{\epsilon_{b}}
$$

from which we get $\alpha_{A}=2.7$ and $\alpha_{C}=0$. Hence the prediction will be the same as for A and wrong in c and d .
Alternatively we assume:

$$
h(\mathbf{x})=\operatorname{sign}\left(h_{A}(\mathbf{x})+h_{c}(\mathbf{x})\right)
$$

and get wrong predictions for $\mathrm{b}, \mathrm{c}, \mathrm{d}$.
Solution We represent an observation of X_{1} by a binary vector \mathbf{x}_{1} with $\sum_{k=1}^{5} x_{1 k}=1$. Further, let $p\left(X_{1}=x_{1 k}\right)=\theta_{1 k}$ with $\sum_{k=1}^{5} \theta_{1 k}=1$. Then, the distribution of X_{1} is a generalization of the Bernoulli distribution:

$$
\begin{equation*}
p\left(X_{1}=x_{k} \mid \boldsymbol{\theta}_{1}\right)=\prod_{k=1}^{5} \theta_{1 k}^{x_{1 k}} \tag{1}
\end{equation*}
$$

Similarly for $X_{2} \mid X_{1}$ we represent an observation of X_{2} by a binary vector $\mathbf{x}_{2 k}$ with $\sum_{l=1}^{3} x_{2 k l}=1$ and $p\left(X_{2}=x_{2 k l} \mid X_{1}=x_{1 k}\right)=\theta_{2 k l}$ with $\sum_{l=1}^{3} \theta_{2 k l}=1$.

$$
\begin{equation*}
p\left(X_{2}=x_{l} \mid X_{1}=x_{k}, \boldsymbol{\theta}_{2 k}\right)=\prod_{l=1}^{3} \theta_{2 k l}^{x_{2 k}} \tag{2}
\end{equation*}
$$

Solution $P\left(X_{2}=\right.$ linkern $\left.\mid X_{1}=\mathrm{nn}, \mathcal{D}\right)=\prod_{j=1}^{5} \theta_{2 k l}^{x_{2 k l}^{j}}$. To estimate $\theta_{2 k l}$ we write the joint
likelihood and use factorization

$$
\begin{align*}
L(\boldsymbol{\theta}) & =\prod_{j=1}^{5} P\left(X_{2}^{j}=\mathbf{x}_{2}, X_{1}^{j}=\mathbf{x}_{1}\right) \tag{3}\\
& =\prod_{j=1}^{5} P\left(X_{2}^{j}=\mathbf{x}_{2} \mid X_{1}^{j}=\mathbf{x}_{1}\right) P\left(X_{1}^{j}=\mathbf{x}\right) \tag{4}\\
& =\prod_{j=1}^{5} \prod_{k=1}^{5} \prod_{l=1}^{3} \theta_{2 k l}^{x_{2 k l}^{j}} l_{1 k}^{x_{1 k}^{j}} \tag{5}
\end{align*}
$$

Then we maximize in θ with the additional constraint that $\sum_{l} \theta_{2 k l}=1$, which we Lagrange relax:

$$
\begin{align*}
L^{\prime}(\theta)= & \ell(\theta)+\lambda \sum_{l}\left(\theta_{2 k l}-1\right) \tag{6}\\
= & \log \prod_{j=1}^{5} \prod_{k=1}^{5} \prod_{l=1}^{3} \theta_{2 k l}^{x_{2 k l}^{j}} \theta_{1 k}^{x_{1 k}^{j}}+\lambda \sum_{l}\left(\theta_{2 k l}-1\right) \tag{7}\\
= & \sum_{j=1}^{5} x_{2 k l}^{j} \log \theta_{2 k l}+\sum_{j=1}^{5} x_{1 k}^{j} \log \theta_{1 k}+\lambda \sum_{l}\left(\theta_{2 k l}-1\right) \tag{8}\\
& \frac{\partial L(\theta)}{\partial \theta_{2 k l}}=\sum_{j=1}^{5} x_{2 k l}^{j} \frac{1}{\theta_{2 k l}}+\lambda \theta_{2 k l}=0 \tag{9}
\end{align*}
$$

Solution This corresponds to $P\left(X_{2}=\right.$ nearest_insertion, $\left.X_{1}=n n \mid \mathcal{D}\right)$ that we can estimate as in the previous point giving o.
The problem is that with max likelihood we are overfitting. Laplace smoothing could help.

Solution

$$
\begin{align*}
p\left(X_{1}=x_{k}\right) & =\theta_{1 k} \tag{10}\\
p\left(\boldsymbol{\theta}_{1} \mid \boldsymbol{\alpha}_{1}\right) & =\operatorname{Dirichlet}\left(\boldsymbol{\theta}_{1 k} \mid \boldsymbol{\alpha}_{1}\right)=\frac{\Gamma\left(\alpha_{10}\right)}{\Gamma\left(\boldsymbol{\alpha}_{11}\right) \cdots \Gamma\left(\alpha_{15}\right)} \prod_{k=1}^{K} \theta_{k}^{\alpha_{1 k}-1} \tag{11}
\end{align*}
$$

where $\alpha_{0}=\sum_{k=1}^{K} \alpha_{k}$. Similarly,

$$
\begin{align*}
p\left(\mathrm{X}_{2}=x_{l} \mid X_{1}=x_{k}\right) & =\theta_{2 k l} \tag{12}\\
p\left(\boldsymbol{\theta}_{2 k} \mid \boldsymbol{\alpha}_{2 k}\right) & =\operatorname{Dirichlet}\left(\boldsymbol{\theta}_{2 k} \mid \boldsymbol{\alpha}_{2 k}\right) \tag{13}
\end{align*}
$$

Solution A uniform initial local prior means that all hyperparameters are equal to 1 . In general, for $\boldsymbol{\theta}=\left[\theta_{1}, \ldots, \theta_{k}\right]^{T} \sim \operatorname{Dir}(\boldsymbol{\alpha})$

$$
E\left[\theta_{i}\right]=\frac{\alpha_{i}}{\sum_{i=1}^{k} \alpha_{i}}
$$

In our case, we first calculate the posterior probability

$$
\begin{align*}
p\left(\theta_{2 k l} \mid \mathcal{D}\right) & =\frac{p\left(\mathcal{D} \mid \theta_{2 k l}\right) p\left(\theta_{2 k l}\right)}{p(\mathcal{D})} \tag{14}\\
& =\operatorname{Dir}\left(\theta_{2 k l} \mid \alpha_{2 k}+\mathbf{m}_{2 k}\right) \tag{15}\\
& =\frac{\Gamma\left(\alpha_{2 k 0}+N\right)}{\Gamma\left(\alpha_{2 k 1}+m_{2 k 1}\right) \cdots \Gamma\left(\alpha_{2 k 3}+m_{2 k 3}\right)} \prod_{l=1}^{3} \theta_{2 k l}^{\alpha_{2 k}+m_{2 k l}-1} \tag{16}
\end{align*}
$$

where we have denoted $\mathbf{m}_{2 k}=\left[m_{2 k 1}, \ldots, m_{2 k 3}\right]^{T}$, the number of observations of $x_{2 k l}$ and $N=\sum_{l} m_{2 k l}$. Then we calculate $P\left(X_{2}=x_{1 l} \mid X_{1}=x_{1 k}, \mathcal{D}\right)$ by marginalizing over the parameter $\theta_{2 k l}$. This will give us the expected value of $\theta_{2 k l}$ with respect to its Dirichelet distribution:

$$
\begin{align*}
P\left(X_{2}=x_{1 l} \mid X_{1}=x_{1 k}, \mathcal{D}\right) & =\int_{-\infty}^{+\infty} P\left(X_{2}=x_{2 l} \mid X_{1}=x_{1 k}, \theta_{2 k l} \mathcal{D}\right) p\left(\theta_{2 k l} \mid \mathcal{D}\right) d \theta_{2 k l} \tag{17}\\
& =E_{p\left(\theta_{2 k l} \mid \mathcal{D}\right)}\left[\theta_{2 k l} \mid \mathcal{D}\right] \tag{18}\\
& =\frac{\alpha_{2 k l}+m_{2 k l}}{\sum_{l} \alpha_{2 k l}+N} \tag{19}\\
& =\frac{1+2}{3+2}=\frac{3}{5}=0.6 \tag{20}
\end{align*}
$$

Solution

We need to compute the joint probability distribution $P\left(X_{1}, X_{2}\right)$

$$
\begin{align*}
P\left(X_{1}=x_{1 k}, X_{2}=x_{2 l} \mid \mathcal{D}\right) & =P\left(X_{2}=x_{2 l} \mid X_{1}=x_{1 k}, \mathcal{D}\right) P\left(X_{1}=x_{1 k} \mid \mathcal{D}\right) \tag{21}\\
& =E_{p\left(\theta_{2 k l} \mid \mathcal{D}\right)}\left[\theta_{2 k l} \mid \mathcal{D}\right] E_{p\left(\theta_{1 k} \mid \mathcal{D}\right)}\left[\theta_{1 k} \mid \mathcal{D}\right] \tag{22}\\
& =\frac{\alpha_{2 k l}+m_{2 k l}}{\sum_{l} \alpha_{2 k l}+N_{2}} \frac{\alpha_{1 k}+m_{1 k}}{\sum_{k} \alpha_{1 k}+N_{1}} \tag{23}
\end{align*}
$$

Thus,

$$
\begin{align*}
p(\text { arbitrary_insertion-linkern }) & =\frac{1+3}{3+3} \cdot \frac{1+3}{5+5}=\frac{4}{6} \frac{4}{10}=0.266 \tag{24}\\
p(\text { nn-linkern }) & =\frac{1+2}{3+2} \cdot \frac{1+2}{5+5}=\frac{3}{5} \frac{3}{10}=0.180 \tag{25}\\
p(\text { arbitrary_insertion-none }) & =\frac{1+0}{3+3} \cdot \frac{1+3}{5+5}=\frac{1}{6} \frac{4}{10}=0.066 \tag{26}\\
p(\text { farthest_insertion-linkern }) & =\frac{1+0}{3+0} \cdot \frac{1+0}{5+5}=\frac{1}{3} \frac{1}{10}=0.033 \tag{27}
\end{align*}
$$

Solution

$$
\begin{align*}
p\left(X_{2}=x_{2 l} \mid \mathcal{D}\right) & =\sum_{k} P\left(X_{2}=x_{2 l} \mid X_{1}=x_{1 k}, \mathcal{D}\right) P\left(X_{1}=x_{1 k} \mid \mathcal{D}\right) \tag{29}\\
& =\sum_{k} E_{p\left(\theta_{2 k l} \mid \mathcal{D}\right)}\left[\theta_{2 k l} \mid \mathcal{D}\right] E_{p\left(\theta_{1 k} \mid \mathcal{D}\right)}\left[\theta_{1 k} \mid \mathcal{D}\right] \tag{30}\\
& =\sum_{k} \frac{\alpha_{2 k l}+m_{2 k l}}{\sum_{l} \alpha_{2 k l}+N_{2}} \frac{\alpha_{1 k}+m_{1 k}}{\sum_{k} \alpha_{1 k}+N_{1}} \tag{31}
\end{align*}
$$

Solution The likely states we can get to at $t=3$ are $x_{3}=2$ and $x_{3}=3$. The other state sequences will have probability at most 10^{-9}. The mean μ_{3} is closer to the observation point thus favoring the state sequence that ends up in $x_{3}=3$. This is $x_{1}=1, x_{2}=2, x_{3}=$ 3.

Solution Roughly, the max probability to these points (could be derived efficiently via max sum algorithm) is:

$$
\begin{gathered}
p\left(y_{3} \mid X 3=3\right) p(X 3=3 \mid X 2=2) p\left(X_{2}=2 \mid X_{1}=1\right) p\left(X_{1}=1\right)=p_{3} \cdot 1 \cdot 1 \cdot 0.5 \\
p\left(y_{3} \mid X 3=4\right) p(X 3=4 \mid X 2=3) p\left(X_{2}=3 \mid X_{1}=2\right) p\left(X_{1}=2\right)=p_{4} \cdot 1 \cdot 1 \cdot 10^{-9}
\end{gathered}
$$

hence if σ^{2} becomes such that $p_{3} \cdot 0.5<p_{4} \cdot 10^{-9}$ then the state sequence that ends up in $x_{3}=4\left(x_{1}=2, x_{2}=3, x_{4}=4\right)$ will become the most likely state sequence.

Exercise 2 - Tree based methods

Consider a data set comprising 400 data points from class \mathcal{C}_{1} and 400 data points from class \mathcal{C}_{2}. Suppose that a tree model A splits these into $(300,100)$ assigned to the first leaf node (predicting \mathcal{C}_{1} and (100,300) assigned to the second leaf node (predicting \mathcal{C}_{2}, where (n, m) denotes that n points come from class \mathcal{C}_{1} and m points come from class \mathcal{C}_{2}. Similarly, suppose that a second tree model B splits them into $(200,400)$ and $(200,0)$, respectively. Evaluate the misclassification rates for the two trees and show that they are equal. Similarly, evaluate the pruning criterion for the cross-entropy case for the two trees.

Exercise 3 - Tree based methods

You are given the following data points: Negative: $(-1,-1)(2,1)(2,-1)$; Positive: $(-2,1)$ $(-1,1)(1,-1)$. The points are depicted in Figure 1.

1. Construct a decision tree using the greedy recursive bi-partitioning algorithm based on information gain described in class. Use both criteria the Gini index and the entropy. In the search for the split threshold θ discretize the continue scale of the two features and consider only values in $\{-1.5,0,1.5\}$ for f_{1} and $\{0\}$ for f_{2}. Represent graphically the tree constructed and draw the decision boundaries in the Figure 1. Table 1 might be useful for some computations
2. Use the tree to predict the outcome for the new point $(1,1)$.

Exercise 4 - Nearest Neighbor

x	y	$-(x / y) \cdot \log (x / y)$	x	y	$-(x / y) \cdot \log (x / y)$
1	2	0.50	1	5	0.46
1	3	0.53	2	5	0.53
2	3	0.39	3	5	0.44
1	4	0.50	4	5	0.26
3	4	0.31			

Table 1: Numerical values for the computation of information gains.

1. Draw the decision boundaries for 1-Nearest Neighbor on the Figure 1. Make it accurate enough so that it is possible to tell whether the integer-valued coordinate points in the diagram are on the boundary or, if not, which region they are in.
2. What class does 1 -NN predict for the new point: $(1,1)$.
3. What class does 3 -NN predict for the new point: (1,0).

Exercise 5 - Practical

Analyze by means of classification tree the data on spam email from the UCI repository. Use rpart from the rpart package and the ctree from the party package.

Exercise 6 - PCA

Using the iris data readily available in R use principle component analysis to identify two components and plot the data in these components. Can you classify the data at this stage?

Exercise 7 - Probability and Independence

A joint probability table for the binary variables A, B, and C is given below.

$$
\begin{array}{ccc}
\mathrm{A} / \mathrm{B} & b_{1} & b_{2} \\
\hline a_{1} & (0.006,0.054) & (0.048,0.432) \\
a_{2} & (0.014,0.126) & (0.032,0.288) \\
\hline
\end{array}
$$

Table 2: Joint probability distribution $P(A, B, C)$

- Calculate $P(B, C)$ and $P(B)$.
- Are A and C independent given B ? (Remember to report the justification of your answer.)

Figure 1: The data points for classification.

