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Exercise 1
Do exercises 1, 4, 5 from Exam 2010.

Solution
m
Jo = Y wiI{h(x;;0) # y;}
j=1
For A J, = 0.06, for B [, = 0.05 for C J, = 0.5. Hence B is the best model.

Solution The question is unclear since #(-) is not defined. Using the definition from

AdaBoost: the prediction is computed by sign (z};l ocbhb(x)). We can use:

h(x) = sign (aaha(x) + achc(x))

the values of a are given by:

Wbl {Iy(xi) # yf

1—e¢
b n :
Zi w; €p

from which we get a4 = 2.7 and a¢c = 0. Hence the prediction will be the same as for A
and wrong in ¢ and d.
Alternatively we assume:

h(x) = sign (ha(x) + he(x))

and get wrong predictions for b, ¢, d.

Solution We represent an observation of X; by a binary vector x; with Zi:l xye = 1.

Further, let p(X; = x1x) = 601 with 2221 01 = 1. Then, the distribution of Xj is a
generalization of the Bernoulli distribution:

5
p(X1=x01) = o1 (1)
k=1

Similarly for X,|X; we represent an observation of X, by a binary vector xy; with
Vi %o = 1 and p(Xa = xou| X1 = x1x) = Opg with Y7 050 = 1.

3
p(Xo = x| X1 = x5, 0) = [ [ 052 (2)
11

j
Solution P(X; = linkern|X; = nn, D) = H;’:l 9;?’[". To estimate 6,;; we write the joint

1
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likelihood and use factorization

5 . .
L) = J]P(X)=x,X]=x1) (3)
j=1
5 ‘ 4 ‘
= HP(Xé = x| X] = x1)P(X} = x) (4)
j=1
5 5 3
= TIT1TTexer (5)
j=1k=11=1
Then we maximize in 0 with the additional constraint that }; 6,;; = 1, which we La-
grange relax:
L'#) = £60)+A) (0u—1) (6)
]
5 5 3 x J
= log[T]1I1 213?9 FHAY (6o — 1) (7)
i=1k=11=1 1
5 . 5
= Z x]2kl log 0211 + Z lek log 01 + A Z(QZkl -1) (8)
j=1 j=1 ]
oL(0) |
Xn—— + Aby =0
aGZkl E 2kl 92kl 2kl (9)
Solution This corresponds to P(X, = nearest_insertion,X; = nn|D) that we can

estimate as in the previous point giving o.
The problem is that with max likelihood we are overfitting. Laplace smoothing could
help.

Solution
p(X1=2x) = Oi (10)

.. Dé1o a—1
01|« = Dirichlet(04;|aq) = g, % 11
p( 1| 1) ( 1k| l) r(“ll) 0615 H (11)

where ay = ZkK:1 «k. Similarly,

p(Xo=x|X1=xx) = 0o (12)
p(Ox|aox) = Dirichlet(0y|ax) (13)

Solution A uniform initial local prior means that all hyperparameters are equal to 1. In
general, for 0 = [6;,...,0;]T ~ Dir(«)
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In our case, we first calculate the posterior probability

p(D|01) p(Oox1)

p(6|D) = (D) (14)
= Dir(0 |aok + myy) (15)
_ 1—‘(“2k0 + N H Qg‘i’;’+m2k’_l (16)

T (@ + Mok ) - - 1ﬂ((9<2k3 + moys)

where we have denoted my; = [y, . .., mys]T, the number of observations of xy; and
N = Y ;myy. Then we calculate P(X, = x1;|X; = x1x, D) by marginalizing over the
parameter 0. This will give us the expected value of 8,;; with respect to its Dirichelet
distribution:

—+o0
P(Xo = x| Xy = x1p, D) = /_ P(Xo = x91| X1 = %1%, 02 D) (021t | D) dO2s1  (17)
= EP(921<1\D) [QZkZIID] (18)
Ko + Moy
— e 1
Y ao+N (19)
1+2 3
= 312 5" 0.6 (20)
Solution

We need to compute the joint probability distribution P(X;, X»)

P(X1 = x1p, Xo = xy|D) = P(Xo = x| X1 = x11, D)P(X1 = x14| D) (21)

= Ey9,yD)[0201| PIE (6, 0) 01| D] (22)
Kokl + Mok K1k + My

T Yt + Ny Teane+ Ny (23)
Thus,

p(arbitrary insertion-linkern) = ;’ig . ;::__g %14—0 = 0.266 (24)
p(nn-linkern) = ;;:::2 . ;ié g% = 0.180 (25)
p(arbitrary_insertion-none) = ;ig . ;ig %14—0 = 0.066 (26)
p(farthest_insertion-linkern) = ;Ig : ;Ig %11—0 = 0.033 (27)
(28)

Solution
p(X2 =xy|D) = ;P(Xz = x| Xy = x15, D) P(Xq = x1¢|D) (29)
= ;E (09a|D) [02x1 I D] E (9, 1) [01k | D] (30)

_ Z Qopr + Mgy Ay + Mg (31)
= Yook + No g + Nq
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Solution

e

Solution The likely states we can get to at t = 3 are x3 = 2 and x3 = 3. The other state

sequences will have probability at most 10~?. The mean u3 is closer to the observation
point thus favoring the state sequence that ends up in x3 = 3. Thisisx; = 1,x, = 2,x3 =
3.

Solution Roughly, the max probability to these points (could be derived efficiently via
max sum algorithm) is:

p(y3|X3 =3)p(X3=3|X2=2)p(X, =2|X3 =1)p(X3=1) =p3-1-1-05

p(ys|X3 =4)p(X3 =4|X2=3)p(Xp =3|X1 =2)p(Xy =2) = p4-1-1-107°

hence if 02 becomes such that p3 - 0.5 < p4 - 1077 then the state sequence that ends up in
x3 =4 (x1 = 2,x2 = 3, x4 = 4) will become the most likely state sequence.

Exercise 2 — Tree based methods

Consider a data set comprising 400 data points from class C; and 400 data points from
class C;. Suppose that a tree model A splits these into (300,100) assigned to the first
leaf node (predicting C; and (100,300) assigned to the second leaf node (predicting C,,
where (n,m) denotes that n points come from class C; and m points come from class
C,. Similarly, suppose that a second tree model B splits them into (200,400) and (200,0),
respectively. Evaluate the misclassification rates for the two trees and show that they
are equal. Similarly, evaluate the pruning criterion for the cross-entropy case for the two
trees.

Exercise 3 — Tree based methods
You are given the following data points: Negative: (-1, -1) (2, 1) (2, -1); Positive: (-2, 1)
(-1, 1) (1,-1). The points are depicted in Figure 1.

1. Construct a decision tree using the greedy recursive bi-partitioning algorithm
based on information gain described in class. Use both criteria the Gini index
and the entropy. In the search for the split threshold 6 discretize the continue scale
of the two features and consider only values in {—1.5,0,1.5} for f; and {0} for f,.
Represent graphically the tree constructed and draw the decision boundaries in
the Figure 1. Table 1 might be useful for some computations

2. Use the tree to predict the outcome for the new point (1,1).

Exercise 4 — Nearest Neighbor



DM825 — SPRING 2011

ASSIGNMENT SHEET

—(x/y) -log(x/y)

—(x/y) -log(x/y)

Y
2
3
3
4
4

W R N R R(R

0.50
0.53
0-39
0.50
0.31

S W N KRR

Y
5
5
5
5

0.46
0.53

0.44
0.26

Table 1: Numerical values for the computation of information gains.

1. Draw the decision boundaries for 1-Nearest Neighbor on the Figure 1. Make it
accurate enough so that it is possible to tell whether the integer-valued coordinate
points in the diagram are on the boundary or, if not, which region they are in.

2. What class does 1-NN predict for the new point: (1, 1).

3. What class does 3-NN predict for the new point: (1, o).

Exercise 5 — Practical

Analyze by means of classification tree the data on spam email from the UCI repository.
Use rpart from the rpart package and the ctree from the party package.

Exercise 6 — PCA

Using the iris data readily available in R use principle component analysis to identify
two components and plot the data in these components. Can you classify the data at

this stage?

Exercise 7 — Probability and Independence

A joint probability table for the binary variables A, B, and C is given below.

A/B b1

by

1 (0.006, 0.054)
a, (0.014, 0.126)

(0.048, 0.432)
(0.032, 0.288)

Table 2: Joint probability distribution P(A, B, C)

e Calculate P(B,C) and P(B).

e Are A and C independent given B? (Remember to report the justification of your

answer.)
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Figure 1: The data points for classification.



