
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

February 4, 2013

Marco Chiarandini

DM825 - Introduction to Machine Learning

Sheet 3, Spring 2013

Exercise 1
Redo exercise 1 from Sheet 1 using logistic regression (transform the response label -1
to 0). Alternatively use logistic regression on these data [classification.data]. Although,
as we will see, logistic regression can be implemented in R via glm, you are asked here
to implement the method by yourself. For the optimization you can reuse the gradient
descent method developed in previous exercises or you can use optim.

Exercise 2
In exercise 3 of Sheet 2 use 1/2 of the data for training the models, 1/4 of the data to select
the model (k-nearest neighbor or linear regression) and 1/4 to assess the performance of
the best model selected.

Exercise 3 Bayesian prediction
In class we saw an example with binary variables. Often however we encounter discrete
variables that can take on one of K possible mutually exclusive states. A way to handle
this situation is to express such variables by a K-dimensional vector ~x in which one of the
xk elements equals to 1 and all remaining elements equal 0. Consider a sample described
by m multinomial random variables (X1, X2, . . . , Xm), where Xi ∼ Mult(θ) for each m,
and where the Xi are assumed conditionally independent given θ. Let θ ∼ Dir(α). Now
consider a random variable Xnew ∼ Mult(θ) that is assumed conditionally independent
of (X1, X2, . . . , Xm) given θ. Compute the predictive distribution:

p(xnew|x1, x2, . . . , xN , α)

by integrating over θ.

Solution The exercise refers to the theory developed in sec. 2.1 and 2.2 of [B1].
With multinomial distributions we consider the representation in which Xj is a random
vector consisting of all 0’s and a single 1. For example, ~x = (0, 0, 1, 0, 0, 0)T. If we denote
p(xk = 1) = θk then Xj ∼ Mult(θ) corresponds to saying:

p(~x|~θ) =
K

∏
k=1

θxk
k (1)

and ~θ = (θ1, . . . , θK)
T. This distribution is also known as generalized Bernoulli distribu-

tion.
Consequently, the likelihood for the training set (X1, X2, . . . , XN) of independent obser-
vations is:

p(~x1, . . . ,~xN |~θ) =
m

∏
j=1

K

∏
k=1

θ
xjk
k =

K

∏
k=1

θ
∑m

j=1 xjk

k =
K

∏
k=1

θlk
k
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where we let lk be the total number of xj that belong to class k. The prior distribution of
θ is

Dir(~θ|~α) = Γ(α0)

Γ(α1) · · · Γ(αK)

K

∏
k=1

θαk−1
k

with 0 ≤ θk ≤ 1, ∑k θk = 1,~α = (α1, . . . , αK)
T and α0 = ∑k αk. The Dirichlet distribution

is constructed with the aim of satisfying the conjugacy property. The fraction in front of
the product is the normalizing coefficient derived from:

1
g(~α)

∫ K

∏
k=1

θαk−1
k d~θ = 1 (2)

g(~α) =
Γ(α1) · · · Γ(αK)

Γ(α0)
(3)

The expected value for the kth component of the random variable ~θ is

E[θk] =
αk

α0
.

In the Figure an example of Dirichelt distribution in 3 dimensions and different values
of αk.
From Bayes’ Theorem

p(~θ|~x1, . . . ,~xN) ∝ p(~x1, . . . ,~xN |~θ)p(~θ) ∝
K

∏
k=1

θαk+lk−1
k

The posterior takes again the form of a Dirichlet distribution (conjugacy property) and
comparing with the definition of the Dirichlet distribution above we can determine the
normalization coefficients as

p(~θ|~x1, . . . ,~xN) = Dir(~θ|~α +~l) =
Γ(α0 + m)

Γ(α1 + l1) · · · Γ(αK + lK)

K

∏
k=1

θαk+lk−1
k (4)

with~l = (l1, . . . , lK)
T.

To evaluate the predictive distribution of a new outcome we use the sum and product
rules of probability

p(~xnew|~x1, . . . ,~xN , α) =
∫ ~1

~0
p(~xnew|~θ,~α)p(~θ|~x1, . . . ,~xN ,~α)d~θ
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From (1) and (4) we have

p(~xnew|~x1, . . . ,~xN , α) =
∫

p(~xnew|~θ,~α)p(~θ|~x1, . . . ,~xN ,~α)d~θ

=
∫ K

∏
k=1

θ
xnew,k
k

1

g(~α +~l)

K

∏
k=1

θαk+lk−1
k d~θ

=
1

g(~α +~l)

∫ K

∏
k=1

θ
αk+lk+xnew,k−1
k

=
g(~α +~xnew +~l)

g(~α +~l)

p(xnew,k = 1|~x1, . . . ,~xN , α) =
Γ(α1 + l1 + x1) · · · Γ(αK + lK + xk)Γ(α0 + m)

Γ(α0 + m + 1)Γ(α1 + l1) · · · Γ(αK + lK)

=
αk + lk

α0 + m

where in the last step we used the fact that Γ(x + 1) = xΓ(x)
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