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Exercise 1
Repeat Exercise 3 of Sheet 3, replacing the multinomial distribution with an arbitrary
exponential family distribution, and the Dirichlet distribution with the corresponding
exponential family conjugate distribution. You are to show that in general the predictive
probability p(xnew|x1, x2, . . . , xN) is a ratio of normalizers.

Solution The exercise refers to the theory developed in sec. 2.4 and 2.4.2 of [B1]. Here

we use a slightly different notation.
We first write out the likelihood for an arbitrary exponential family to find the form of
the conjugate prior.

p(x1, . . . , xN |η) =

(
∏

j
h(xj)

)
g(η)m exp

(
ηT ∑

j
u(xj)

)

=

(
∏

j
h(xj)

)
exp

(
ηT ∑

j
T(xj)−mA(η)

)

where we rewrote the exponential distribution in slightly different terms than we saw at
lecture with exp{−mA(η)} = g(η)m and T = u.
The conjugate family of priors has the same “form” as the likelihood to ensure that the
posterior remains in the family of priors. Thus, for conjugate prior we use

p(η|τ, n0) =
1

Z(τ, n0)
exp

(
ηTτ − n0A(η)

)
where Z(τ, n0) is a normalizing function

Z(τ, η0)
def
=
∫

exp
(

ηTτ − η0A(η)
)

dη

Then,

p(x1, . . . , xm|τ, n0) =
∫

p(x1, . . . , xm|η)p(η|τ)dη

=
∫ ( m

∏
j=1

h(xj)

)
exp

(
ηT

(
τ +

m

∑
j=1

T(xj)

)
− (m + n0)A(η)

)
dη

=

(
m

∏
j=1

h(xj)

)
Z

(
τ +

m

∑
j=1

T(xj), m + n0

)
Similarly

p(xnew, x1, . . . , xm|τ, n0) =

(
h(xnew)

m

∏
j=1

h(xj)

)
Z

(
τ + T(xnew) +

m

∑
j=1

T(xj), m + n0 + 1

)
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The predictive probability is then, from product rule,

p(xnew|x1, . . . , xm, τ) =
p(xnew, x1, . . . , xm|τ)

p(x1, . . . , xm|τ)

=

(
h(xnew) ∏m

j=1 h(xj)
)

Z
(

τ + T(xnew) + ∑m
j=1 T(xj), m + n0 + 1

)
(

∏m
j=1 h(xj)

)
Z
(

τ + ∑m
j=1 T(xj), m + n0

)
= h(xnew)

Z
(

τ + T(xnew) + ∑m
j=1 T(xj), m + n0 + 1

)
Z
(

τ + ∑m
j=1 T(xj), m + n0

)

Exercise 2Exponential family and geometric distribution (Task 2 of Exam
2010, 20 points)
A way to solve constraint satisfaction problems is by complete tree search. In other courses,
we saw that random restart of the solver may reduce the time for solving a specific problem
instance. Let yj = 1, 2, 3, ... be the number of times we need to restart the solver in a
specific run j before being able to solve the given instance. For each run of the solver we
know the features of the instance to solve (eg, size, density and type of constraints, etc.)
and the heuristics used in the search procedure. We use this information to construct for
each run j a feature vector xj. On the basis of the results collected y1, y2, y3, . . . and the
corresponding feature vectors x1, x2, x3, . . . we could learn to predict how many times we
need to restart the solver in a particular run.
The probability that the first occurrence of a success requires k number of independent
trials, each with success probability φ, is p(Y = y, φ) = (1− φ)y−1φ, y = 1, 2, 3, . . .. This
distribution is known as the geometric distribution and it seems well suited to model y|x
in our learning task.

0.0.1 (10 points)

Show that the geometric distribution is in the exponential family

p(y|η) = b(y)g(η) exp{ηTu(y)}

by giving b(y), g(η), η and u(y).

Solution

p(Y = y, φ) = (1− φ)y−1φ (1)

= exp{log(1− φ)y−1φ} (2)

= exp{(y− 1) log(1− φ) + log φ} (3)

= exp{y log(1− φ)− log(1− φ) + log φ} (4)

= exp{y log(1− φ) + log
φ

1− φ
} (5)

=
φ

1− φ
exp{y log(1− φ)} (6)
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Thus

b(y) = 1 (7)

η = log(1− φ) (8)

u(y) = y (9)

g(η) =
φ

1− φ
=

1− eη

eη
(10)

(11)

where we used the fact that η = log(1− φ)⇒ 1− φ = eη ⇒ φ = 1− eη.

0.0.2 (5 points)

Consider performing regression using a GLM model with a geometric response variable.
What is the canonical response function for the family? You may use the fact that the
mean of a geometric distribution is given by 1/φ.

Solution Recalling that we assume linear dependency of the natural parameter η from x
via parameters θ

y = h(x, θ) = E[y, φ] =
1
φ

=
1

1− eη
=

1
1− eθTx

0.0.3 (5 points)

For a training set (xj, yj); j = 1, . . . , m, let the log-likelihood of an example be log p(yj|xj, θ).
By taking the derivative of the log-likelihood with respect to θi, derive the stochastic gradi-
ent ascent rule for learning using a GLM model with geometric responses y. Show that this
rule depends on the training responses yj and their predicted value through the canonical
response function.

Solution The log-likelihood of an example (xj, yj) is defined as `(θ) = log p(yj|xj, θ).
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`j(θ) = log
[

φ

1− φ
exp{yj log(1− φ)}

]
(12)

= log

[
1− eη(θ)

eη(θ)
exp{yj log(eη(θ))}

]
(13)

= log

[
1− eη(θ)

eη(θ)
exp{yjη(θ)}

]
(14)

= log
1− eη(θ)

eη(θ)
+ {yjη(θ)} (15)

= log(1− eη(θ)) + (yj − 1)η(θ) (16)

= log(1− eθxj
) + (yj − 1)θxj (17)

∂`j(θ)

∂θi
=

1
1− eθxj (−eθxj

)xj
i + (yj − 1)xj

i (18)

∂`j(θ)

∂θi
=

(
yj − 1 +

eθxj

1− eθxj

)
xj

i (19)

=

(
yj − 1

1− eθxj

)
xj

i (20)

(21)

Thus the stochastic gradient ascent update rule should be

θi := θi + α
∂`j(θ)

∂θi

which is

θi := θi + α

(
yj − 1

1− eθxj

)
xj

i
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Exercise 3
Examine the iris data example in R.

#

?iris # read documentation

data(iris) # load data

str(data) # examine contents

As you see there are 5 features that can be used to predict one of the 3 Species. You can
get some visualization of the data via example(matplot).
If you do not like this famous example from botanic you can use the wine data set from
the UCL repository or any similar data for classification task of your choice.
Fit a GLM model in R and assess its prediction error via cross validation. (Use mlogit

from the homonymous package.)

Solution

> data(iris)

> head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

> str(iris)

'data.frame': 150 obs. of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

> # Visualizing the data is a good practice for preprocessing

> # Here is a set of possible exploratory plots

>

> library(lattice)

> super.sym <- trellis.par.get("superpose.symbol")

> print(

splom(~iris[1:4], groups = Species, data = iris,

panel = panel.superpose,

key = list(title = "Three Varieties of Iris",

columns = 3,

points = list(pch = super.sym$pch[1:3],

col = super.sym$col[1:3]),

text = list(c("Setosa", "Versicolor", "Virginica"))))

)
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Scatter Plot Matrix
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> print(

splom(~iris[1:3]|Species, data = iris,

layout=c(2,2), pscales = 0,

varnames = c("Sepal\nLength", "Sepal\nWidth", "Petal\nLength"),

page = function(...) {

ltext(x = seq(.6, .8, length.out = 4),

y = seq(.9, .6, length.out = 4),

labels = c("Three", "Varieties", "of", "Iris"),

cex = 2)

})

)
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Scatter Plot Matrix
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> print(

parallelplot(~iris[1:4] | Species, iris)

)
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Petal.Width
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> print(

parallelplot(~iris[1:4], iris, groups = Species,

horizontal.axis = FALSE, scales = list(x = list(rot = 90)))

)
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Let’s fit the multinomial model. The multinom from the nnet package fits multinomial-log
linear models via neural networks, that is like a perceptron.

> library(nnet)

> res <- multinom(Species ~ ., data=iris)

# weights: 18 (10 variable)

initial value 164.791843

iter 10 value 16.177348

iter 20 value 7.111438

iter 30 value 6.182999

iter 40 value 5.984028

iter 50 value 5.961278

iter 60 value 5.954900

iter 70 value 5.951851

iter 80 value 5.950343

iter 90 value 5.949904

iter 100 value 5.949867

final value 5.949867

stopped after 100 iterations

> summary(res)

Call:

multinom(formula = Species ~ ., data = iris)

Coefficients:

(Intercept) Sepal.Length Sepal.Width Petal.Length Petal.Width
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versicolor 18.7 -5.46 -8.71 14.2 -3.1

virginica -23.8 -7.92 -15.37 23.7 15.1

Std. Errors:

(Intercept) Sepal.Length Sepal.Width Petal.Length Petal.Width

versicolor 35.0 89.9 157 60.2 45.5

virginica 35.8 89.9 157 60.5 45.9

Residual Deviance: 11.9

AIC: 31.9

The function can be used to make predictions. Here we only show on the training data.

> # The estimated class probabilities for the training data can be found in

> # res$fitted.values

> # the classification assigns the object to the class with maximal

> # estimated probability

> pr <- predict(res,iris)

> table(iris$Species,pr)

pr

setosa versicolor virginica

setosa 50 0 0

versicolor 0 49 1

virginica 0 1 49

If we interpret the weights as being the coefficient of the linear regression, and recall
Equation 2.213 of page 115 of the book [B1], we can inspect visually the trend of predictions
as follows:

> #

> # We can plot the estimated class probabilities as a function of

> # Petal.Width, for Sepal.Length 5.8, Sepal.Width 3 and Petal.Length 4.35

> #

> x1 <- seq(0.1,2.5,0.1)

> n <- length(x1)

> b <- summary(res)

> beta2 <- b$coefficients[1,]

> beta3 <- b$coefficients[2,]

> p <- matrix(0,n,3)

> for (i in 1:n){

x <- c(1,5.80,3,4.35,x1[i])

e2 <- exp(beta2%*%x)

e3 <- exp(beta3%*%x)

et <- 1+e2+e3

p[i,2] <- e2/et

p[i,3] <- e3/et

p[i,1] <- 1-p[i,2]-p[i,3]

}

> plot(x1,p[,1],type="l",ylim=c(0,1),xlab="Sepal.Length",ylab="Class probability")

> lines(x1,p[,2],lty=2)

> lines(x1,p[,3],lty=3)
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Multilayer perceptrons provide a flexible non-linear extension of multinomial regression.
In R the function nnet from the package nnet provides an implementation to fit single-
hidden-layer neural networks, possibly with skip-layer connections (i.e., a link from the
input node directly to the output nodes).

> library(nnet)

> # fit the network on a training set of half of the data

> samp <- c(sample(1:50,25),sample(50:100,25),sample(101:150,25))

> res <- nnet(Species ~ .,data=iris,subset=samp,size=2,maxit=1000)

# weights: 19

initial value 85.867433

iter 10 value 38.557387

iter 20 value 32.826386

iter 30 value 5.329724

iter 40 value 4.220010

iter 50 value 4.140479

iter 60 value 3.985465

iter 70 value 3.752394

iter 80 value 3.721591

iter 90 value 3.718627

iter 100 value 3.712700

iter 110 value 3.709950

iter 120 value 3.707154

iter 130 value 3.705335

iter 140 value 3.704206

iter 150 value 3.697511
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iter 160 value 3.696636

iter 170 value 3.696201

iter 180 value 3.695870

iter 190 value 3.694746

iter 200 value 3.692780

iter 210 value 3.690666

iter 220 value 3.688130

iter 230 value 3.687604

iter 240 value 3.687345

iter 250 value 3.686881

iter 260 value 3.686431

iter 270 value 3.686378

iter 280 value 3.685633

iter 290 value 3.685542

iter 300 value 3.685500

iter 310 value 3.685441

iter 320 value 3.685155

iter 330 value 3.685102

iter 340 value 3.685052

iter 350 value 3.685017

iter 360 value 3.684160

final value 3.684091

converged

> summary(res)

a 4-2-3 network with 19 weights

options were - softmax modelling

b->h1 i1->h1 i2->h1 i3->h1 i4->h1

1.33 -0.06 1.30 -0.81 -1.90

b->h2 i1->h2 i2->h2 i3->h2 i4->h2

0.83 1.89 4.65 -8.07 -4.51

b->o1 h1->o1 h2->o1

-10.60 12.61 30.81

b->o2 h1->o2 h2->o2

1.34 43.20 -23.56

b->o3 h1->o3 h2->o3

10.00 -56.36 -7.25

>

> # The estimated class probabilities for the training data can be found in

> # res$fitted.values

>

> # the classification assigns the object to the class with maximal

> # estimated probability

Let’s compare the results:

> ## Let's see the performance on the test set

> pr <- predict(res,iris[-samp,],type="class")

> table(iris$Species[-samp],pr)
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pr

setosa versicolor virginica

setosa 24 0 0

versicolor 0 23 3

virginica 0 0 25

> # comparison with multinomial regression:

>

> res <- multinom(Species ~ .,data=iris,subset=samp)

# weights: 18 (10 variable)

initial value 82.395922

iter 10 value 6.983625

iter 20 value 3.783012

iter 30 value 3.753404

iter 40 value 3.743956

iter 50 value 3.739582

iter 60 value 3.738105

iter 70 value 3.736435

iter 80 value 3.735971

iter 90 value 3.734952

iter 100 value 3.734520

final value 3.734520

stopped after 100 iterations

> pr <- predict(res,iris[-samp,])

> table(iris$Species[-samp],pr)

pr

setosa versicolor virginica

setosa 24 0 0

versicolor 0 23 3

virginica 0 0 25
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