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Exercise 1 — Linear discriminants

1. Develop analytically the formulas of a generative algorithm with Gaussian likeli-
hood for a k-way classification problem. In particular, estimate the model param-
eters.

2. Derive the explicit formula of the decision boundaries in the case of two predictor
variables.

Solution For any linear model used for classifying the k class we have h(X) =
0T%. Then the boundary between two classes given by h(¥) = k(%) is the set
{X: (6 — 6)X =0}

Several methods use a discriminant function &, to map the linear model to some-

thing else. Among these methods we have those that map to a probability measure
to be considered the posterior p(Cy | X = X). For example, logistic regression uses:

Ci|X=%)= -
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If the discrimninat function is monotone then the decision boundaries are linear.
For the case of the logit transformation log[p/(1 — p)] we see that
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The decision boundary is the case where the two posterior probabilities are equal
and hence log1 = 0 = 6%.
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In the linear discriminat analysis we have:
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which is the linear discriminant that we were asked to find.
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3. Implement the analysis in R using the data:

Iris <- data.frame(cbind(iris[,c(2,3)], Sp = rep(c("s","c","v"), rep
(50,3))))

train <- sample(1:150, 75)

table(Iris$Spl[train])

Plot the contour of the Gaussian distribution and linear discriminant

4. Compare your results with those of the 1da function from the package MASS in R.

Deepening: read section 4.3.3 of B2 and inspect the outcome of 1da when run on
the full data with all 4 predictors, ie:

Iris <- data.frame(cbind(iris, Sp = rep(c("s","c","v"), rep(50,3))))

z <- 1da(Sp ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
Iris, prior = c(1,1,1)/3, subset = train)

# predict(z, Iris[-train, ])$class

plot(z,dimen=1)
plot(z,type="density",dimen=1)
plot(z,dimen=2)

Exercise 2 — Naive Bayes

You decide to make a text classifier. To begin with you attempt to classify documents
as either sport or politics. You decide to represent each document as a (row) vector of
attributes describing the presence or absence of words.

X = (goal, football, golf, defence, offence, wicket, office, strategy)

Training data from sport documents and from politics documents is represented below
using a matrix in which each row represents a (row) vector of the 8 attributes.

10111011
00010011
.. _Jtoo11010
polites = 1 1. 0 0 1 1 0 1
00011011
0001100 1]
1 100 0 0 0 0
00100000
11010000
Xsport= |1 1 0 1 0 0 0 1
11011000
00010100
1111101 0]

Using a Naive Bayes classifier, what is the probability that the document ¥ = (1,0,0,1,1,1,1,0)
is about politics?
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Solution

Step 1: Let x; be the presence of the jth word among the 8 words. Let y be the classifiction

in politics or sports. We estimate the parameters of the Bernoulli distributions involved,
namely:

' ply) ~ ¢y
Vitp(xi =1y =0) ~ ¢jy=0
Vitp(yi=1ly=1) ~ ¢jy=
Step 2: We do this using the joint likelihood. For a single sample among the 6+7 given,
we assume x;s are conditionally independent given y. By chain rule:

p(x1,...,xg)

X1

(2 |y, x1)p(x3 |y, x1,%2) . ...
Jp(x2 | y)p(xs|y)... cond. indep.
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where m = 13 and n = 8. Maximizing we find: Solution:

Hy' =1
%:Z {Za }
iy =1,xi =1}

Pily=1 = Y H{y =1}
Ly =0x=1}
P = Ty = 0}

Hence it is a counting task. Working on numerical data with the help of R:

P <- matrix(scan("p.txt"),ncol=8,nrow=6,byrow=TRUE)
S <- matrix(scan("s.txt"),ncol=8,nrow=7,byrow=FALSE)
(phiy <- nrow(P)/(nrow(P)+nrow(S)))

0.46154

(phijyl <- apply(P,2,sum)/nrow(P))

[1] 0.33333 0.16667 0.16667 0.83333 0.83333 0.16667 0.66667 0.83333
(phijy0 <- apply(S,2,sum)/nrow(S))

0.28571 0.14286 0.42857 0.42857 0.42857 0.28571 0.42857 0.71429

Step 3 and 4: To predict we maximize:

2 — |
arg max ply | X) = arg max (@)
argmax p(¥ | y)p(y)
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X <-c(1, 0, 0, 1, 1, 1, 1, 0)
pylx <- sum(log(phijyl[x]))+sum(log(1-phijy1[!x]))+log(phiy)
pyOx <- sum(log(phijyO[x]))+sum(log(1-phijyO0[!x]))+log(1-phiy)

Hence since logp(y = 1 | X) = —8.4227 is greater than logp(y = 0 | X) = —8.8494 we
classify ¥ as politics.



