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Exercise 1 – Linear discriminants

1. Develop analytically the formulas of a generative algorithm with Gaussian likeli-
hood for a k-way classification problem. In particular, estimate the model param-
eters.

2. Derive the explicit formula of the decision boundaries in the case of two predictor
variables.

Solution For any linear model used for classifying the k class we have hk(~x) =

~θT~x. Then the boundary between two classes given by hk(~x) = hl(~x) is the set
{~x : (~θk −~θl)~x = 0}
Several methods use a discriminant function δk to map the linear model to some-
thing else. Among these methods we have those that map to a probability measure
to be considered the posterior p(Ck | ~X = ~x). For example, logistic regression uses:

p(C1 | ~X = ~x) =
1

1 + exp~θ~x

p(C2 | ~X = ~x) =
exp~θ~x

1 + exp~θ~x

If the discrimninat function is monotone then the decision boundaries are linear.
For the case of the logit transformation log[p/(1− p)] we see that

log
p(C1 | ~X = ~x)
p(C2 | ~X = ~x)

= ~θ~x

The decision boundary is the case where the two posterior probabilities are equal
and hence log 1 = 0 = ~θ~x.

In the linear discriminat analysis we have:

log
p(Ck | ~X = ~x)
p(Cl | ~X = ~x)

= log
p(~x | Ck)p(Ck)

p(~x | Ck)p(Ck)

= log
N(µk, Σ)φk

N(µl , Σ)φl
= log

N(µk, Σ)
N(µl , Σ)

+ log
φk

φl
=

= log
φk

φl
− 1

2
(µk + µl)

TΣ−1(µk − µl) + xTΣ−1(µk − µl)

which is the linear discriminant that we were asked to find.
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3. Implement the analysis in R using the data:

Iris <- data.frame(cbind(iris[,c(2,3)], Sp = rep(c("s","c","v"), rep

(50,3))))

train <- sample(1:150, 75)

table(Iris$Sp[train])

Plot the contour of the Gaussian distribution and linear discriminant

4. Compare your results with those of the lda function from the package MASS in R.

Deepening: read section 4.3.3 of B2 and inspect the outcome of lda when run on
the full data with all 4 predictors, ie:

Iris <- data.frame(cbind(iris, Sp = rep(c("s","c","v"), rep(50,3))))

z <- lda(Sp ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width

,

Iris, prior = c(1,1,1)/3, subset = train)

# predict(z, Iris[-train, ])$class

plot(z,dimen=1)

plot(z,type="density",dimen=1)

plot(z,dimen=2)

Exercise 2 – Naive Bayes
You decide to make a text classifier. To begin with you attempt to classify documents
as either sport or politics. You decide to represent each document as a (row) vector of
attributes describing the presence or absence of words.

~x = (goal, football, golf, defence, offence, wicket, office, strategy)

Training data from sport documents and from politics documents is represented below
using a matrix in which each row represents a (row) vector of the 8 attributes.

xpolitics =



1 0 1 1 1 0 1 1
0 0 0 1 0 0 1 1
1 0 0 1 1 0 1 0
0 1 0 0 1 1 0 1
0 0 0 1 1 0 1 1
0 0 0 1 1 0 0 1



xsport =



1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0
1 1 0 1 0 0 0 1
1 1 0 1 1 0 0 0
0 0 0 1 0 1 0 0
1 1 1 1 1 0 1 0


Using a Naive Bayes classifier, what is the probability that the document ~x = (1, 0, 0, 1, 1, 1, 1, 0)
is about politics?
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Solution
Step 1: Let xj be the presence of the jth word among the 8 words. Let y be the classifiction
in politics or sports. We estimate the parameters of the Bernoulli distributions involved,
namely:

p(y) ∼ φy
∀j : p(xj = 1|y = 0) ∼ φj|y=0
∀j : p(xj = 1|y = 1) ∼ φj|y=1

Step 2: We do this using the joint likelihood. For a single sample among the 6+7 given,
we assume xjs are conditionally independent given y. By chain rule:

p(x1, . . . , x8) = p(x1 | y)p(x2 | y, x1)p(x3 | y, x1, x2) . . .
= p(x1 | y)p(x2 | y)p(x3 | y) . . . cond. indep.

=
m

∏
i=1

p(xi | y)

l(φy, φj|y=0, φj|y=1) =
m

∏
i=1

p(~xi, yi)

=
m

∏
i=1

n

∏
j=1

p(xi
j | yi)p(yi)

where m = 13 and n = 8. Maximizing we find: Solution:

φy =
∑i I{yi = 1}

m

φj|y=1 =
∑i I{yi = 1, xi

j = 1}
∑i I{yi = 1}

φj|y=0 =
∑i I{yi = 0, xi

j = 1}
∑i I{yi = 0}

Hence it is a counting task. Working on numerical data with the help of R:

P <- matrix(scan("p.txt"),ncol=8,nrow=6,byrow=TRUE)

S <- matrix(scan("s.txt"),ncol=8,nrow=7,byrow=FALSE)

(phiy <- nrow(P)/(nrow(P)+nrow(S)))

0.46154

(phijy1 <- apply(P,2,sum)/nrow(P))

[1] 0.33333 0.16667 0.16667 0.83333 0.83333 0.16667 0.66667 0.83333

(phijy0 <- apply(S,2,sum)/nrow(S))

0.28571 0.14286 0.42857 0.42857 0.42857 0.28571 0.42857 0.71429

Step 3 and 4: To predict we maximize:

arg max
y

p(y | ~x) = arg max
y

p(~x | y)p(y)
p(~x)

arg max
y

p(~x | y)p(y)
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p(y = 1 | ~x) = p(~x | y = 1)p(y = 1) =
8

∏
j=1

p(xi
j|yi = 1)p(yi = 1)

=
8

∏
j=1

φ
xi

j

j|y=1(1− φj|y=1)
1−xi

j φy

p(y = 0 | ~x) = p(~x | y = 0)p(y = 0) =
8

∏
j=1

p(xi
j|yi = 0)p(yi = 0)

=
8

∏
j=1

φ
xi

j

j|y=0(1− φj|y=0)
1−xi

j(1− φy)

In logarithms:

log p(y = 1 | ~x) =
8

∑
j=1

[xi
j log(φj|y=1) + (1− xi

j) log(1− φj|y=1)] + log(φy)

log p(y = 0 | ~x) =
8

∑
j=1

[xi
j log(φj|y=0) + (1− xi

j) log(1− φj|y=0)] + log(1− φy)

x <- c(1, 0, 0, 1, 1, 1, 1, 0)

py1x <- sum(log(phijy1[x]))+sum(log(1-phijy1[!x]))+log(phiy)

py0x <- sum(log(phijy0[x]))+sum(log(1-phijy0[!x]))+log(1-phiy)

py1x

-8.4227

py0x

-8.8494

Hence since log p(y = 1 | ~x) = −8.4227 is greater than log p(y = 0 | ~x) = −8.8494 we
classify ~x as politics.
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