DM825 - Introduction to Machine Learning

Sheet 8, Spring 2013

Exercise 1 - Support vector machines

Suppose that the following are a set of points in two classes:

$$
\begin{aligned}
& \text { class 1: }\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& \text { class 2: }\left[\begin{array}{l}
0 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

Plot them and find the optimal separating line. What are the support vectors, and what is the margin.

Exercise 2

Consider the four input points of an XOR function. Find a way to separate out the true cases from the false ones by using a linear separator.

Solution

Introduce a third input:

In 1	In 2	In 3 (1x2)	Output
O	O	O	I
O	I	O	O
I	O	O	O
I	I	I	I

Now we are in three dimensions and the points are linearly separable.
Alternatively: change targets to have -1 and 1 values and introduce a basis of all terms up to quadratic in the two features:

$$
1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1} x_{2}, x_{1}^{2}, x_{2}^{2}
$$

Then we solve:

$$
\max _{\vec{a}}=\sum_{i=1}^{4} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{4} \sum_{j=1}^{4} y^{i} y^{j} \alpha_{i} \alpha_{j}\left\langle\vec{\phi}\left(\vec{x}^{i}\right), \vec{\phi}\left(\vec{x}^{j}\right)\right\rangle
$$

subject to $\alpha_{1}-\alpha_{2}+\alpha_{3}-\alpha_{4}=0, \alpha+i \geq 0, i=1, \ldots, 4$. It can be solved algebraically and gives a classifier line at $x_{1} x_{2}=0$.

Exercise 3

Show that, irrespective of the dimensionality of the data space, a data set consisting of just two data points, one from each class, is sufficient to determine the location of the maximum-margin hyperplane.

Solution

Given a data set of two data points, $x_{1} \in C^{+}(t 1=+1)$ and $x_{2} \in C^{-}(t 2=-1)$, the maximum margin hyperplane is determined by solving

$$
\arg \min _{\vec{\theta}, \theta_{0}} \frac{1}{2}\|\vec{\theta}\|^{2}
$$

subject to the constraints

$$
\begin{aligned}
\vec{\theta}^{T} \vec{x}_{1}+\theta_{0} & =+1 \\
\vec{\theta}^{T} \vec{x}_{2}+\theta_{0} & =-1
\end{aligned}
$$

We do this by introducing Lagrange multipliers α_{1} and α_{2}, and solving

$$
\arg \min _{\vec{\theta}, \theta_{0}} \frac{1}{2}\|\vec{\theta}\|^{2}+\alpha_{1}\left(\vec{\theta}^{T} \vec{x}_{1}+\theta_{0}-1\right)+\alpha_{2}\left(\vec{\theta}^{T} \vec{x}_{1}+\theta_{0}+1\right)
$$

Taking the derivative of this w.r.t. $\vec{\theta}$ and θ and setting the results to zero, we obtain

$$
\begin{aligned}
& 0=\vec{\theta}+\alpha_{1} x_{1}+\alpha_{2} x_{2} \\
& 0=\alpha_{1}+\alpha_{2}
\end{aligned}
$$

which immediately gives $\alpha_{1}=-\alpha_{2}$, and $\vec{\theta}=\alpha_{1}(x 1-x 2)$.
For θ_{0}, we solve:

$$
2 \theta_{0}=-\vec{\theta}^{T}\left(x_{1}+x_{2}\right)
$$

Note that the Lagrange multiplier α_{1} remains undetermined, which reflects the inherent indeterminacy in the magnitude of $\vec{\theta}$ and θ_{0}.

