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Linear Regression

k Nearest Neighbor

Curse of Dimensionality
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We saw linear combination of input variables. We can generalize to other
functions while preserving linearity in ~θ, eg, polynomials.

 linear combination of a fixed set of nonlinear functions of input variables
known as basis functions.

(~y, ~x) training data (ŷ, hθ(~x)) prediction on new data

h(~x, ~θ) = θ0 + θ1x1 + . . .+ θpxp linear regression

h(~x, ~θ) = θ0 +
p∑
j=1

θjxj +
p∑
i=1

p∑
j=1

θijxixj +
p∑
i=1

p∑
j=1

p∑
k=1

θijkxixjxk polynomial

h(~x, ~θ) = θ0 +
p∑
j=1

θjφj(~x) = ~θT ~φ(~x) linear models

h is now a nonlinear function of input vector ~x but h is linear in ~θ

even though, parameters remain easy to estimate, curse of dimensionality
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in overfitting parameters θ reach high values

rule of thumb: 5,10 times more data then parameters

counteract this by introducing a regularization term in the cost function:

L̃(~θ) =
1

2
L(~θ) + λE~θ(

~θ)

=
1

2

m∑
i=1

(
yi − ~θT ~φ(~xi)

)2
+
λ

2
~θT ~θ

in statistics shrinkage and
ridge regression
in ML weight decay
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It remains a quadratic function that can be solved analytically:

~θ = (λI+ φTφ)−1φT~y

problem shifted to determine λ

Try in R via optim
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Linear models are global functions so changes in one region affect everywhere

divide into regions, fit different polynomials in each region  spline
function

locally weighted linear regression
Ordinary lin. regr.: to predict any query point ~x carry out step 2 below:

1. fit ~θ = argmin
∑
i(y

i − ~θT~xi)2

2. output ~θ~x
Loc. lin. reg. (nonparametric method): repeat for each ~x to predict:

1. fit ~θ = argmin
∑
i wi(y

i − ~θT~xi)2

2. output ~θ~x

wi = exp
(
− (~xi−~x)T (~xi−~x)

2τ2

)
, τ bandwidth

if ||xi − x|| is small =⇒wi close to 1; if large =⇒wi close to 0;
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L(~θ) =
1

2
[h(x)− y)]2 on training data

on test data

E[L(θ)] =
1

2

m∑
i=1

[h(x)− y]2 average loss

ERMS =

√
2E[L(~θ)]/m root mean square

11



Course Introduction
Linear Models for Regression
Probabilistic InterpretationOutline

1. Course Introduction

2. Linear Models for Regression

3. Probabilistic Interpretation
Probability Review
Linear Models

12



Course Introduction
Linear Models for Regression
Probabilistic InterpretationProbability Theory Review

We randomly select one of the boxes
and from that box we randomly pick
with replacement an item of fruit.

X,Y random variables (the Box and the Fruit)

xi, i = 1 . . .M, yj , j = 1 . . . L values

Pr(X = xi, Y = yj) =
nij

N joint probability

Pr(X = xi) =
∑L
j=1 Pr(X = xi, Y = yj) =

ci
N marginal prob. (product rule)

Pr(Y = yj | X = xi) =
nij

ci
conditional probability

Pr(X = xi, Y = yj) = Pr(Y = yj | X = xi) Pr(X = xi) product rule

Note:
p(X) is probability distribution of a random variable
p(x) is the distribution evaluated for that particular value x
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p(X,Y ) = p(X)p(Y )⇐⇒ p(Y | X) = p(Y ) independency

product rule + p(X,Y ) = p(Y,X) =⇒ Bayes rule:

p(Y | X) =
p(X | Y )p(Y )

p(X)
=

p(X | Y )p(Y )∑
Y p(X | Y )p(Y )

Continuous variables
p(x) probability density over x, ie, prob. of falling in (x, x+ δx)

p(x ∈ (a, b)) =
∫ b
a
p(x)dx probability density function

(if x is discrete p(x) is probability mass function)

P (z) =
∫ z
−∞ p(x)dx cumulative distribution function

p(~x) = p(x1, . . . , xk)

p(x) =
∫
p(x, y)dy marginalization (sum rule)

p(x, y) = p(y|x)p(x) product rule
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average value of some function f(x) under p(x)

E[f ] =
∑
x

p(x)f(x) E[f ] =

∫
p(x)f(x)dx

Ex[f(x, y)] if several variables we specify

Ex[f |y] =
∑
x p(x|y)f(x) conditional expectation with respect to some

conditional distribution

var[f ] = E
[
(f(x)− E[f(x)])2

]
= E[f(x)2]− E[f(x)]2 variance

16



Course Introduction
Linear Models for Regression
Probabilistic InterpretationBayesian Probabilities

Classical or frequentist notion frequency of observed values of random
variables: relative occurrence of the values
criticism: does not work with unrepeatable events

Bayesian perspective looks at the uncertainty that surrounds the model
parameters ~w

We capture our assumptions about ~w before observing data in the form of a
prior probability distribution p(~w).

D = {y1, . . . , ym} observed data

p(D|~w) conditional probability or likelihood function
how probable the observed data is for different settings of parameter ~w

p(~w|D) effect of observed data, uncertainty of ~w after observed D, posterior

p(~w|D) = p(D|~w)p(~w)
p(D)

=
p(D|~w)p(~w)∫
p(D|~w)p(~w)d~w

posterior ∝ likelihood × prior
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Frequentist ~w is a fixed parameter, whose value is determined by
“estimators” and confidence intervals
maximum likelihood method:

~w = argmax p(D|~w)
= argmin (− log p(D|~w))
= argmin (− logL)

Bayesian prior probability distribution over ~w
derive mathematically the posterior from the Bayes rule
Eg: flip a coin 3 times and get 3 heads
max likelihood would give w = 1, w prob. of getting head
the prior compensate

Criticism: the prior is selected on the basis of mathematical convenience
rather than reflection of believes.

18



Course Introduction
Linear Models for Regression
Probabilistic InterpretationExamples

We draw a sample ~x = (x1, . . . , xm) from a
Gaussian distribution and we want to learn the
parameters of the Gaussian distribution from
which the sample was drawn

N (x|µ, σ2) =
1√
2πσ2

exp

{
− (x− µ)2

2σ2

}
Frequentist Approach
~X = (X1, . . . , Xm) from N , Xi independent and identically distributed.

p(D|~w) = p(~x|µ, σ2) =

m∏
i=1

N (xi|µ, σ2) likelihood function

log is monotonically increasing function:
it transforms

∏
in
∑

it saves us from numerical issues with small numbers
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max likelihood

max log p(~x|µ, σ2) = log
∏
i

1√
2πσ2

exp

{
− (xi − µ)2

2σ2

}
= − 1

2σ2

∑
i

(xi − µ)2 − m

2
log σ2 − m

2
log(2π)

max
µ

=⇒ µML =
1

m

m∑
i=1

xi

max
σ2

=⇒ σ2
ML =

1

m

m∑
i=1

(xi − µ)2

(if you do not remember derivatives try http://www.wolframalpha.com)
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Bayesian approach
~X = (X1, . . . , Xm) from N , Xi independent and identically distributed
Let’s assume σ2 known

likelihood function

p(D|~w) = p(~x|µ) =
m∏
i=1

N (xn|µ) =
1

(2πσ2)m/2
exp

{
−
∑
i(x

i − µ)2

2σ2

}
we choose for the prior a conjugate distribution: the posterior is again a
distribution of the same form.
a Gaussian distribution has this property, hence:

p(µ) = N (µ|µ0, σ
2
0) prior distribution

posterior:

p(µ| ~X) ∝ p( ~X|µ)p(µ)
After some mathematical manipulations the posterior can be shown to be:

p(µ| ~X) = N (µ|µm, σ2)

µm =
σ2

mσ2
0 + σ2

µ0 +
mσ2

0

mσ2
0 + σ2

1

m

∑
i

xi;
1

σ2
m

=
1

σ2
0

+
m

σ2
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µm =
σ2

mσ2
0 + σ2

µ0 +
mσ2

0

mσ2
0 + σ2

1

m

∑
i

xi

1

σ2
m

=
1

σ2
0

+
m

σ2

for m = 0, µ reduces to the prior

for m→∞, µ reduces to the max likelihood solution

the variance is more conveniently expressed in form of precision.
Precisions are additive

for m = 0, precision reduces to the prior

for m→∞, variance becomes increasingly peaked around the max
likelihood solution.

hence the max likelihood solution is recovered by the Bayesian formalism
in the limit of an infinite number of observations.
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We show why the least square loss function
is a reasonable function for curve fitting

by looking at the problem from the probabilistic perspective.
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x = (~x1, . . . , ~xm)T input values

~y = (y1, . . . , ym)T target values

We want to predict ŷ for ~x. We can express our uncertainty on ŷ using a
probability distribution. We assume:

p(y | ~x, ~θ, σ2) = N (y | h(~x, ~θ), σ2)
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We search unknwons ~θ, σ2 given training set (~x, ~y). Data drawn
independently from identical distributions

p(y | ~x, ~θ, σ2) =

m∏
i=1

N (yi | h(~xi, θ), σ2)

log p(y | ~x, ~θ, σ2) = − 1

2σ2

∑
i

[h(~xi, ~θ)− yi]2 − m

2
log σ2 − m

2
log(2π)

max
~θ

=⇒ max
~θ

1

2σ2

m∑
i=1

[h(~xi, ~θ)− yi]2 error function

max
σ2

=⇒ σ2
ML =

1

m

m∑
i=1

[h(~xi, ~θ)− yi]2

Prediction on a new value of ~x uses the predictive distribution with the
parameters above

p(y | ~x, ~θML, σ
2
ML) = N (y | h(~x, ~θML), σ

2
ML)

it returns the expected value Ey[p(y|~w)]
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Let’s introduce a prior distribution over the parameters ~θ. For simplicity
(α = 1/σ2, precision)

p(~θ | α) = N (~θ | 0, α−1I) =
( α
2π

)2
exp

{
−α
2
~θT ~θ

}
by Bayes’ theorem:

p(~θ | y, ~x, α, σ2) ∝ p(y | ~x, ~θ, σ2)p(~θ | α)

we find ~θ by finding most probable value given data (max posterior)

min
{
− log p(y | ~x, ~θ, σ2)− log p(~θ | α)

}
min{− 1

2σ2

∑
i

[h(~xi, ~θ)− yi]2 − m

2
log σ2 − m

2
log(2π)

+ (p+ 1) log(α2π) +
α

2
~θT ~θ}

min

{
− 1

2σ2

∑
i

[h(~xi, ~θ)− yi]2 + α

2
~θT ~θ

}
quadratic loss + regularization
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However we are still making point estimate.
A full Bayesian approach uses consistently only sum and product rule of
probabilities:

(~y,x) training data + new point ~x.
We want to predict ŷ for ~x.
Hence we are interested in the predictive distribution p(y | D), ie p(y | ~x, ~y,x)

p(y | ~x, ~y,x, α, β) =
∫
p(y | ~x, ~θ)p(~θ | y, ~x, α, β)d~θ

everything can be derived analytically and is of
the form:

p(y | ~x, ~y,x, α, β) = N (y | m(~x), s2(~x))
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