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We saw three ways to derive the parameter of Linear Models

> least square loss
» maximum likelihood approach

» Bayesian approach
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1. Binary Variables



Binary Variables

Bin ary Variables Madel Asscsement and Selec
» We toss a coin a number of times and wish to learn the probability of
the coin.
» 2 € {0,1}
> 1 probability of getting 1: p(z = 1| u) = p

v

Bern(z | 1) = p*(1 — p)* = Bernoulli distribution
Elz] = p, Var[z] = p(1 — p)

» D= {z! ... 2™} observed values

v

likelihood: prob. of D under the assumption that data are i.i.d from
p(@ | p):
p(D | ) =]]p: | n)

i=1
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Frequentist approach

m m

max log p(D | p) Zl() ' p) = ZTZ log pt + (1 — ") log(1 — p)

i=1
derivative wrt 1 to null:

m

HML = Z x'

Hence, with 3 heads in 3 tosses we get 113/, = 1, which sounds like an
unreasonable overfitting
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Bayesian approach
We know the likelihood as expressed in the previous slide, we need to choose
a prior distribution p(y).

Conjugacy property: the posterior has the same functional form as the prior.
A distribution that has this property is the beta distribution:

r b
((1 + )M(I,—l

Farm” 4w

Beta(u | a,b) =
I'(z) = fOOC w e tduand T'(z +1) = 2I'(2). I'(1) = 1 and I'(2) = 2!

ab

(a+b)?(a+b+1)

Elu] = Var[u] =
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The density of beta for different values of @ and b, in this context called the
hyperparameters.
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Step 1: from Bayes theorem, with a batch learning approach in which %
number of head in the observations:
I'(a+b+m)
(k+a)(m—Fk+0b)

p(p | k,m—Fk,a,b) « T M(k“rll)*l( )(mkarb)—'l

1—p
sequential learning approach: update at each observation, if additional
data arrive, the posterior becomes prior

Step 2: express the predictive distribution and predict the value:
1

P =11D) = [ (X =110 D).plu | D "
0
o1
= /0 pp(p | D)dp = Elp | D] Pl )
k+a

_ because expected value
- a+ b +m of beta distribution



Binary Variables

fraction of real observations and fictitious prior distribution.

for k — oo reduces to max likelihood.

- 2— - -
prior likelihood function posterior
1 1 1
0 0 0
0 0.5 1 0 0.5 0 0.5 1
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2. Logistic Regression
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Classification and Logistic Regression  wedlasementand selee

Binary classification problem: Y = {0,1} or Y = {—1, 1} (labels)

» We could use the linear regression algorithms that we saw and round.
» Or: we change our hypothesis:

() = g(07 %) g:R—1[0,1],h:R? —[0,1].

In ML g(+) is called activation function
In statistics g~ '(-) is called link function

A common choice for ¢ is the logistic function
or sigmoid function:

9(2) = , hence =t
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Logistic Regression

» Note that ¢ is nonlinear in both the parameters and the inputs

> However, the decision surface corresponds to i (7) = constant and hence
to a linear function of 7 (/7 = ¢! (constant) = constant)

» for later use the derivative of the sigmoid function is:

=t L1 .
gz d ] _d2(1+€*2)2€
1 1
Cl4ez <1 1+€2) =9(2)(1 —g(2))

» how do we fit 07

» Remark: the methods we see remain valid if we use basis functions in
place of Z, that is, ¢ (&)
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Maximum likelihood approach:
Let's assume that:

Pr(y = 1| 76) = hy(7)
Pr(y = 0| &;0) = 1 — hy(7)

Then, the likelihood for one single example is a Bernoulli distribution
Pr(y | & 0) = hg(@)" (1 — hy(a))'

and for m i.i.p. training examples:

L(0) = p(7| X.0) = Hpv\

m
i

log L(0) = ZJ log h(z") + (1 - y*) log(1 — h(z"))

—

To maximize we use the gradient descent: 0; := 0; + aVy, log L(0)
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1 9
=g ) a1
V=) ) 96701 = (67 ) 6T
— (1= y)g(0"2))a; = (y — ho(x))

j = 0; + aly — hg(Z))z;

hence the update rule remains the same even though 7 is now nonlinear.
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Newton-Raphson Method
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Newton method to find zeros of a function in one dimension:

f(0)
f1(0)

moves to point where tangent meets zero.

0:=6-—

Minimizing a function corresponds to set its first derivative to zero hence:

_g_ 40
0:=40 710)

In n dimensions:

finds minima

0:=60—H 'Vof(6) H;j =

Hessian
16
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3. Model Assessment and Selection
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Loss Functions for Regression Model Assessment and Selec

Loss function

LY, h(X) = (Y —h(X)?  LV,hX) = SV —h(X))? (1)

LY, h(X)) = |Y — h(X)| LY, h(X)) = 3V = (X (2)

We saw that (1) has a probabilistic interpretation which makes it appealing.

Training error

ZLQMW))]

i=1

Test error or generalization error (expected prediction error):
Err = EPE = E[L(y, h(%))], (y, ) drawn from test set

18



Expected loss:

E[L] = //L(yay(f))p(f, y)didy = //[y(f) —y)’p(Z,

which function y(Z) minimizes E[L]?

35([:?; = 2'/[?/(-7?) —ylp(#,y)dy =0  solving in y(-):
() = Jyp(E,y)dy L

p(%)

that is, the optimal solution is the expectation conditional on ¥

Binary Variables
Logistic Regression
Model Assessment and Selec

y)ddy

» We used this fact already with the probabilitic interpretation.

» It is also the outcome with the least square method.
» The next slide shows another way to obtain this result.
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Bias-Variance Decomposition Model Asscssment and Selec

by adding and removing E, [y | 7] in [y(Z) — y|*:

L= [ {o(@) ~ BWia)) s(@di + [ {Elyla] - ) p(@dz

> first term vanishes when y(Z) = E, [y | 7]

» second term is the variance of the distribution of y averaged over 7, it is
intrinsic variability of target data and can be regarded as noise.
(irreducible)

20
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In practice we have a limited number of observations D therefore the exact
y(&) = E, [y | 7] cannot be found. We use instead a parametric function

hd, ).

To estimate the perofmance of a learning algorithm we average over an
ensamble of data sets D. We add and remove Ep[y(Z, D)]

Epl{y(%, D) - h(#)}*] ={Ep[{y(Z.D)] — h(z)}’
""E’D [{U(T’ D) - E’D [y(f ID)} }2}

expected loss = (bias)? + variance + noise

where
(bias)® = f{ED[U(X; D)] — h(x)}*p(x) dx
variance = /ED [{y(x; D) — Eply(x; D)]}Z] plx) dx

noise = /{h(x) — t1%p(x.t) dx dt
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Tl’a d e Off Model Assessment and Selec

High Bias Low Bias
Low Variance High Variance
-l -—

Test Sample

Prediction Error

/

Training Sample

Low High
Model Complexity
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