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We saw three ways to derive the parameter of Linear Models

I least square loss

I maximum likelihood approach

I Bayesian approach
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I We toss a coin a number of times and wish to learn the probability of
the coin.

I x ∈ {0, 1}

I µ probability of getting 1: p(x = 1 | µ) = µ

I Bern(x | µ) = µx(1− µ)1−x Bernoulli distribution
E[x] = µ, Var[x] = µ(1− µ)

I D = {x1, . . . , xm} observed values

I likelihood: prob. of D under the assumption that data are i.i.d from
p(x | µ):

p(D | µ) =
m∏
i=1

p(xi | µ)

I we want to learn the parameter µ of the distribution
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Frequentist approach

max log p(D | µ) =

m∑
i=1

log p(xi | µ) =

m∑
i=1

xi logµ+ (1− xi) log(1− µ)

derivative wrt µ to null:

µML =
1

m

m∑
i=1

xi

Hence, with 3 heads in 3 tosses we get µML = 1, which sounds like an
unreasonable overfitting
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Bayesian approach
We know the likelihood as expressed in the previous slide, we need to choose
a prior distribution p(µ).

Conjugacy property: the posterior has the same functional form as the prior.

A distribution that has this property is the beta distribution:

Beta(µ | a, b) =
Γ(a+ b)

Γ(a)Γ(b)
µa−1(1− µ)b−1

Γ(z) =
∫∞
0
uz−1e−udu and Γ(z + 1) = zΓ(z). Γ(1) = 1 and Γ(z) = z!

E[µ] =
a

a+ b
Var[µ] =

ab

(a+ b)2(a+ b+ 1)
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The density of beta for different values of a and b, in this context called the
hyperparameters.

8



Binary Variables
Logistic Regression
Model Assessment and Selection

Step 1: from Bayes theorem, with a batch learning approach in which k
number of head in the observations:

p(µ | k,m−k, a, b) ∝ Γ(a+ b+m)

Γ(k + a)Γ(m− k + b)
µ(k+a)−1(1−µ)(m−k+b)−1

sequential learning approach: update at each observation, if additional
data arrive, the posterior becomes prior

Step 2: express the predictive distribution and predict the value:

p(X = 1 | D) =

∫ 1

0

p(X = 1 | µ,D), p(µ | D)dµ p(x)=
∫
p(x,y)dy

sum rule

=

∫ 1

0

µp(µ | D)dµ = E[µ | D] p(x,y)=p(y|x)p(x)
product rule

=
k + a

a+ b+m
because expected value

of beta distribution
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fraction of real observations and fictitious prior distribution.
for k →∞ reduces to max likelihood.
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Binary classification problem: Y = {0, 1} or Y = {−1, 1} (labels)
I We could use the linear regression algorithms that we saw and round.
I Or: we change our hypothesis:

h~θ(~x) = g(~θT~x) g : R→ [0, 1], h : Rp → [0, 1].

In ML g(·) is called activation function
In statistics g−1(·) is called link function

A common choice for g is the logistic function
or sigmoid function:

g(z) =
1

1 + e−z
, hence

h~θ(~x) =
1

1 + e−~θT ~x
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I Note that g is nonlinear in both the parameters and the inputs

I However, the decision surface corresponds to h(~x) = constant and hence
to a linear function of ~x (~θT~x = g−1(constant) = constant)

I for later use the derivative of the sigmoid function is:

g′(z) =
d

dz

1

1 + e−z
=

d

dz

1

(1 + e−z)2
e−z

=
1

1 + e−z

(
1− 1

1 + e−z

)
= g(z)(1− g(z))

I how do we fit ~θ?

I Remark: the methods we see remain valid if we use basis functions in
place of ~x, that is, ~φ(~x)

13



Binary Variables
Logistic Regression
Model Assessment and Selection

Maximum likelihood approach:
Let’s assume that:

Pr(y = 1 | ~x; ~θ) = h~θ(~x)

Pr(y = 0 | ~x; ~θ) = 1− h~θ(~x)

Then, the likelihood for one single example is a Bernoulli distribution

Pr(y | ~x, ~θ) = h~θ(~x)y(1− h~θ(~x))1−y

and for m i.i.p. training examples:

L(~θ) = p(~y | X, ~θ) =

m∏
i=1

p(yi | ~xi, ~θ)

=

m∏
i=1

h~θ(~x
i)y

i

(1− h~θ(~x
i))1−y

i

logL(~θ) =

m∑
i=1

yi log h(xi) + (1− yi) log(1− h(xi))

To maximize we use the gradient descent: θj := θj + α∇θj logL(~θ)
14



Binary Variables
Logistic Regression
Model Assessment and Selection

∂

∂θj
=

(
y

1

g(θTx)
− (1− y)

1

1− g(θTx)

)
∂

∂θj
g(θTx)

=

(
y

1

g(θTx)
− (1− y)

1

1− g(θTx)

)
g(θTx)(1− g(θTx))

∂

∂θj
θTx

= (y(1− g(θTx))− (1− y)g(θTx))xj = (y − hθ(x))xj

θj := θj + α(y − h~θ(~x))xj

hence the update rule remains the same even though h is now nonlinear.
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Newton method to find zeros of a function in one dimension:

θ := θ − f(θ)

f ′(θ)

moves to point where tangent meets zero.

Minimizing a function corresponds to set its first derivative to zero hence:

θ := θ − f ′(θ)

f ′′(θ)
finds minima

In n dimensions:

θ := θ −H−1∇θf(θ) Hij =
∂2f(θ)

∂θ
Hessian
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Loss function

L(Y, h( ~X)) = (Y − h( ~X))2 L(~Y , h(X)) =
∑
i

(Y i − h( ~Xi))2 (1)

L(Y, h( ~X)) = |Y − h( ~X)| L(~Y , h(X)) =
∑
i

|Yi − h( ~Xi)| (2)

We saw that (1) has a probabilistic interpretation which makes it appealing.

Training error

err =
1

m

[
m∑
i=1

L(yi, h(~xi))

]

Test error or generalization error (expected prediction error):
Err = EPE = E[L(y, h(~x))], (y, ~x) drawn from test set
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Expected loss:

E[L] =

∫ ∫
L(y, y(~x))p(~x, y)d~xdy =

∫ ∫
[y(~x)− y]2p(~x, y)d~xdy

which function y(~x) minimizes E[L]?

∂E[L]

∂y(~x)
= 2

∫
[y(~x)− y]p(~x, y)dy = 0 solving in y(·):

y(~x) =

∫
yp(~x, y)dy

p(~x)
= Ey[y | ~x]

that is, the optimal solution is the expectation conditional on ~x

I We used this fact already with the probabilitic interpretation.
I It is also the outcome with the least square method.
I The next slide shows another way to obtain this result.
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by adding and removing Ey[y | ~x] in [y(~x)− y]2:

E[L] =

∫
{y(~x)− E[y|~x]}2 p(~x)d~x+

∫
{E[y|~x]− y}2 p(~x)d~x

I first term vanishes when y(~x) = Ey[y | ~x]

I second term is the variance of the distribution of y averaged over ~x, it is
intrinsic variability of target data and can be regarded as noise.
(irreducible)
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In practice we have a limited number of observations D therefore the exact
y(~x) = Ey[y | ~x] cannot be found. We use instead a parametric function
h(~θ, ~x).

To estimate the perofmance of a learning algorithm we average over an
ensamble of data sets D. We add and remove ED[y(~x,D)]

ED[{y(~x,D)− h(~x)}2] ={ED[{y(~x,D)]− h(~x)}2

+ED[{y(~x,D)− ED[y(~x,D)]}2].
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