
DM825

Introduction to Machine Learning

Lecture 5
Perceptron and Neural Networks

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Decision Theory
Perceptron
Multilayer PerceptronOutline

1. Decision Theory

2. Perceptron

3. Multilayer Perceptron

2

Decision Theory
Perceptron
Multilayer PerceptronOutline

1. Decision Theory

2. Perceptron

3. Multilayer Perceptron

3

Decision Theory
Perceptron
Multilayer PerceptronDecision Theory

Optimal decision under uncertainty ← probability theory + decision theory
Probability theory:
We infer the joint probability p(~y, ~x) then we must decide on ~y.
Example:

medical diagnosis: C1 has cancer y = 1
C2 has not cancer y = 0

p(Ck, ~x) not enough to decide optimally.
Decision step
we derive p(Ck | ~x) = p(~x|Ck)p(Ck

p(~x) (all obtainable from Ck, p(Ck, ~x))
We want to minimize the probability of assigning to the wrong class. We
show that the intuition of choosing the class with p(Ck, ~x) is right.
Rk decision regions of the input space: boundaries are called decision
boundaries (or surfaces)

4

Decision Theory
Perceptron
Multilayer Perceptron

Mistake if C1 is true but it is predicted C2.

p(mistake) = p(~x ∈ R1, C2) + p(~x ∈ R2, C1)

=

∫
R1

p(~x, C2)dx+

∫
R2

p(~x, C1)dx

since p(Ck, ~x) = p(Ck | ~x)p(~x) and p(~x) is common, the solution that
minimizes is the one that assigns each ~x to Rk with largest p(Ck | ~x).

5

Decision Theory
Perceptron
Multilayer PerceptronMinimizing Expected Loss

Lkj true class Ck, predicted Cj L =
cancer normal

C 0 1000
N 1 0

The true class is unknown. We inferred p(~x, Ck), we want to choose the
boundary regions that minimize expected loss:

E[L] =
∑
k

∑
j

∫
Rj

Lkjp(~x, Ck)d~x

For each ~xwe minimize
∑
k Lkjp(~x, Ck) that is for each ~xwe choose j such

that
∑
k Lkjp(Ck | ~x) is minimum.

Possible to introduce a threshold θ
and reject those inputs ~xfor which the
largest of the posterior probabilities
p(Ck | ~x) is less than or equal to θ

6

Decision Theory
Perceptron
Multilayer PerceptronGenerative vs Discriminative Approaches

Discriminative Approaches:

I construct a discriminative function that directly assigns each vector ~x to
a specific class.

I determine conditional probability p(y | ~x, θ) or p(Ck | ~x, θ) by
parameterzing and then determine parameters via MaxLikelihood.

It learns a decision boundary in the space of inputs, then maps a new input
to the response.

Generative Approaches: determine p(~x | Ck) and P (Ck) and then compute
p(Ck | ~x) via Bayes rule
It learns the distribution of the class features, then assign new input
according to the class that gives highest probability

7

Decision Theory
Perceptron
Multilayer PerceptronResume

I ~x feature vector
I ~φ(~x) non linear transformation of ~x

I h(~x) = f(~θT · ~φ(~x)) generalized linear model
I under the first discriminative approach f(·) must map to one of the

responses

f(·):
I in regression was I(·)
I in classification

I two-classes ~y ∈ {0, 1}, logistic
I k-classes 1-of-k, y is vector of size k, softmax

f(·) is called activation function in ML and its inverse link function in
statistics

8

Decision Theory
Perceptron
Multilayer Perceptron

I In linear regression, since f ≡ I then f(~θ, ~φ(~x)) is linear in ~θ and in the
simplest case also in ~x

I In classification, f is non linear in ~θ.
The decision boundaries are described by h~θ(~x) = const hence if ~θT · ~x
is a linear function then ~θT · ~x = const and the boundary is linear in ~x
(or in any case it is linear in ~φ(~x))

9

Decision Theory
Perceptron
Multilayer PerceptronOutline

1. Decision Theory

2. Perceptron

3. Multilayer Perceptron

10

Decision Theory
Perceptron
Multilayer PerceptronPerceptron Algorithm

Classification problem.
h~θ(~x) = f(~θT , ~φ(~x)) and ~φ(~x) includes a bias component ~φ0

f(a) =

{
+1 a ≥ 0

−1 a < 0

How to determine ~θ?
Error function minimization:

I misclassification patterns:
not good because piecewise constant function and gradient methods do
not work.

I perceptron criterion:

we seek ~θ such that
~θT · ~φ(~x)i ≥ 0 if ~xi ∈ C1
~θT · ~φ(~x)i < 0 if ~xi ∈ C2

hence: ~θT · ~φ(~x)i · yi > 0 if prediction correct and ~θT · ~φ(~x)i · yi < 0
otherwise.
hence: we minimize: Ep(~θ) = −

∑
i∈M

~θT ~φ(~x)iyi, M set of misclassified
11

Decision Theory
Perceptron
Multilayer Perceptron

We can use stochastic gradient function:

~θt+1
j = ~θt − α∇Ep(~θ) = ~θt + α~φ(~x)iyi

since h(~θ · ~φ(~x)) stays unchanged if all ~θ are scaled then α = 1 w.l.g.

[Demo]

12

Decision Theory
Perceptron
Multilayer PerceptronPerceptron Convergence

Theorem
If the training data set is linearly separable, the perceptron learning algorithm
is guaranteed to find an exact solution in a limited number of steps.

I maybe large number of iterations required

I may depend on the order in which data are presented

I for non linearly separable points the algorithm will never converge

I it does not provide probabilistic output

I it does not generalize to k > 2

I based on linear combination of basis functions

Minsky and Papert (1969) showed that perceptrons do not work on non
linearly separable points.

13

Decision Theory
Perceptron
Multilayer PerceptronOutline

1. Decision Theory

2. Perceptron

3. Multilayer Perceptron

14

Decision Theory
Perceptron
Multilayer PerceptronMultilayer Perceptrons

We saw:
h(~x) = f

(∑p
j=1 θjφj(~x)

)
f(·) in general nonlinear activation function

These models comprised linear combinations of fixed basis functions:
+ analytical properties
– curse of dimensionality

Idea: fix the number of basis functions but allow them to adapt:
I let φj(~x) depend on parameters
I adjust these parameters along with θj during training

Multilayer perceptron: multiple layers of logistic regression
The likelihood function is no longer a convex function of ~θ.

Neural Networks: McCulloch, Pitts (1943), Rosenblatt (1962)
perspective here: statistical pattern recognition
restrict to multilayer perceptrons

15

Decision Theory
Perceptron
Multilayer PerceptronImplementation

Each basis function uses the same form, so each basis function is itself a non
linear function of a linear combination of inputs.

x0

x1

xD

...inputs

z0

z1

zM

...

y1

yK
... outputs

j l

k

θ
(1)
jl

θ
(2)
lk

16

Decision Theory
Perceptron
Multilayer Perceptron

First Layer

al =

D∑
i=1

θ1ilxi + θ10l

θ1il weights
θ10l biases
al activations

Transformed by differentiable nonlinear activation functions f(·):

zl = f(al) output of the hidden units

linearly combined again to give activations to output unit
Second Layer

ak =

M∑
l=1

θ2lkxi + θ20k k = 1 . . .Koutputs

transformed by activation function to give a set of network outputs ŷ:
– identity: ŷk = ak
– multiple binary classification: ŷk = σ(ak) =

1
1+exp(−ak) logistic sigmoid

– multiclass: ŷk = exp(ak)∑
j exp(aj)

softmax
17

Decision Theory
Perceptron
Multilayer Perceptron

Combining all together:

yk = hk(~x, ~θ)

= σ

(
M∑
l=1

θ2lkf

(
D∑
i=1

θ1ilxi + θ10l

)
+ θ20k

)

= σ

(
M∑
l=0

θ2lkf

(
D∑
i=1

θ1ilxi

))
x0 = 1

evaluating this is called forward propagation

Note:
I this is not a prob. graphical model because nodes represent deterministic

variables, not stochastic.
I perceptrons use step function nonlinarity

NN uses continuous sigmoidal nonlinear (but differentiable)

18

Decision Theory
Perceptron
Multilayer Perceptron

I If all hidden layers have linear activation function =⇒ ∃ equivalent
network without hidden layer
(composition of linear transformations is itself a linear transformation)

I If number of hidden layers is smaller than input and output nodes
=⇒not most general possible linear transformation

I Some confusion in counting layers:
I 3-layers
I single hidden layer
I 2-layers (num. of adaptive weights)

19

Decision Theory
Perceptron
Multilayer PerceptronTraining

Deterministic approach: minimize error function:

Err(~θ) =
1

2

m∑
i=1

||h(~xi, ~θ)− ~yi||2

Probabilistic approach

I Regression
assume one single out put y and Gaussian distributed with mean
dependent on the NN output:

p(y | ~x, ~θ) = N (y | h(~x, ~θ), β1)

assume h to be I(·)
(~x, ~y) = {(~x1, y1) . . . (~xm, ym)}
likelihood L(~θ) = p(~y|~x, ~θ, β) =

∏m
i=1 p(y

i | ~xi, ~θ, β)

− logL(~θ) = β

2

m∑
i=1

{h(~xi, ~θ)− yi}2 − m

2
lnβ +

α

2
ln(2π)

We minimize in ~θ and β
20

Decision Theory
Perceptron
Multilayer Perceptron

find ~θML minimizing: E(~θ) = β
2

∑m
i=1{h(~xi, ~θ)− yi}2 (nonconvex)

find βML substituting ~θML in 1
βML

=
∑m
i=1

1
m{h(~x

i, ~θ)− yi}2

If multiple independent outputs, ie, ~y: E(~θ) = β
2

∑m
i=1 ||h(~xi, ~θ)− yi||2

Note that for ŷk = ak: ∂E
∂ak

= ŷk − yk

I Binary classification

21

	Decision Theory
	Perceptron
	Multilayer Perceptron

