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Optimal decision under uncertainty ← probability theory + decision theory
Probability theory:
We infer the joint probability p(~y, ~x) then we must decide on ~y.
Example:

medical diagnosis: C1 has cancer y = 1
C2 has not cancer y = 0

p(Ck, ~x) not enough to decide optimally.
Decision step
we derive p(Ck | ~x) = p(~x|Ck)p(Ck

p(~x) (all obtainable from Ck, p(Ck, ~x))
We want to minimize the probability of assigning to the wrong class. We
show that the intuition of choosing the class with p(Ck, ~x) is right.
Rk decision regions of the input space: boundaries are called decision
boundaries (or surfaces)
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Mistake if C1 is true but it is predicted C2.

p(mistake) = p(~x ∈ R1, C2) + p(~x ∈ R2, C1)

=

∫
R1

p(~x, C2)dx+

∫
R2

p(~x, C1)dx

since p(Ck, ~x) = p(Ck | ~x)p(~x) and p(~x) is common, the solution that
minimizes is the one that assigns each ~x to Rk with largest p(Ck | ~x).
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Lkj true class Ck, predicted Cj L =
cancer normal

C 0 1000
N 1 0

The true class is unknown. We inferred p(~x, Ck), we want to choose the
boundary regions that minimize expected loss:

E[L] =
∑
k

∑
j

∫
Rj

Lkjp(~x, Ck)d~x

For each ~xwe minimize
∑
k Lkjp(~x, Ck) that is for each ~xwe choose j such

that
∑
k Lkjp(Ck | ~x) is minimum.

Possible to introduce a threshold θ
and reject those inputs ~xfor which the
largest of the posterior probabilities
p(Ck | ~x) is less than or equal to θ
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Discriminative Approaches:

I construct a discriminative function that directly assigns each vector ~x to
a specific class.

I determine conditional probability p(y | ~x, θ) or p(Ck | ~x, θ) by
parameterzing and then determine parameters via MaxLikelihood.

It learns a decision boundary in the space of inputs, then maps a new input
to the response.

Generative Approaches: determine p(~x | Ck) and P (Ck) and then compute
p(Ck | ~x) via Bayes rule
It learns the distribution of the class features, then assign new input
according to the class that gives highest probability
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I ~x feature vector
I ~φ(~x) non linear transformation of ~x

I h(~x) = f(~θT · ~φ(~x)) generalized linear model
I under the first discriminative approach f(·) must map to one of the

responses

f(·):
I in regression was I(·)
I in classification

I two-classes  ~y ∈ {0, 1}, logistic
I k-classes  1-of-k, y is vector of size k, softmax

f(·) is called activation function in ML and its inverse link function in
statistics
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I In linear regression, since f ≡ I then f(~θ, ~φ(~x)) is linear in ~θ and in the
simplest case also in ~x

I In classification, f is non linear in ~θ.
The decision boundaries are described by h~θ(~x) = const hence if ~θT · ~x
is a linear function then ~θT · ~x = const and the boundary is linear in ~x
(or in any case it is linear in ~φ(~x))
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Classification problem.
h~θ(~x) = f(~θT , ~φ(~x)) and ~φ(~x) includes a bias component ~φ0

f(a) =

{
+1 a ≥ 0

−1 a < 0

How to determine ~θ?
Error function minimization:

I misclassification patterns:
not good because piecewise constant function and gradient methods do
not work.

I perceptron criterion:

we seek ~θ such that
~θT · ~φ(~x)i ≥ 0 if ~xi ∈ C1
~θT · ~φ(~x)i < 0 if ~xi ∈ C2

hence: ~θT · ~φ(~x)i · yi > 0 if prediction correct and ~θT · ~φ(~x)i · yi < 0
otherwise.
hence: we minimize: Ep(~θ) = −

∑
i∈M

~θT ~φ(~x)iyi, M set of misclassified
11



Decision Theory
Perceptron
Multilayer Perceptron

We can use stochastic gradient function:

~θt+1
j = ~θt − α∇Ep(~θ) = ~θt + α~φ(~x)iyi

since h(~θ · ~φ(~x)) stays unchanged if all ~θ are scaled then α = 1 w.l.g.

[Demo]
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Theorem
If the training data set is linearly separable, the perceptron learning algorithm
is guaranteed to find an exact solution in a limited number of steps.

I maybe large number of iterations required

I may depend on the order in which data are presented

I for non linearly separable points the algorithm will never converge

I it does not provide probabilistic output

I it does not generalize to k > 2

I based on linear combination of basis functions

Minsky and Papert (1969) showed that perceptrons do not work on non
linearly separable points.
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We saw:
h(~x) = f

(∑p
j=1 θjφj(~x)

)
f(·) in general nonlinear activation function

These models comprised linear combinations of fixed basis functions:
+ analytical properties
– curse of dimensionality

Idea: fix the number of basis functions but allow them to adapt:
I let φj(~x) depend on parameters
I adjust these parameters along with θj during training

Multilayer perceptron: multiple layers of logistic regression
The likelihood function is no longer a convex function of ~θ.

Neural Networks: McCulloch, Pitts (1943), Rosenblatt (1962)
perspective here: statistical pattern recognition
restrict to multilayer perceptrons
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Each basis function uses the same form, so each basis function is itself a non
linear function of a linear combination of inputs.

x0

x1

xD

...inputs

z0

z1

zM

...

y1

yK
... outputs

j l

k

θ
(1)
jl

θ
(2)
lk
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First Layer

al =

D∑
i=1

θ1ilxi + θ10l

θ1il weights
θ10l biases
al activations

Transformed by differentiable nonlinear activation functions f(·):

zl = f(al) output of the hidden units

linearly combined again to give activations to output unit
Second Layer

ak =

M∑
l=1

θ2lkxi + θ20k k = 1 . . .Koutputs

transformed by activation function to give a set of network outputs ŷ:
– identity: ŷk = ak
– multiple binary classification: ŷk = σ(ak) =

1
1+exp(−ak) logistic sigmoid

– multiclass: ŷk = exp(ak)∑
j exp(aj)

softmax
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Combining all together:

yk = hk(~x, ~θ)

= σ

(
M∑
l=1

θ2lkf

(
D∑
i=1

θ1ilxi + θ10l

)
+ θ20k

)

= σ

(
M∑
l=0

θ2lkf

(
D∑
i=1

θ1ilxi

))
x0 = 1

evaluating this is called forward propagation

Note:
I this is not a prob. graphical model because nodes represent deterministic

variables, not stochastic.
I perceptrons use step function  nonlinarity

NN uses continuous sigmoidal  nonlinear (but differentiable)
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I If all hidden layers have linear activation function =⇒ ∃ equivalent
network without hidden layer
(composition of linear transformations is itself a linear transformation)

I If number of hidden layers is smaller than input and output nodes
=⇒not most general possible linear transformation

I Some confusion in counting layers:
I 3-layers
I single hidden layer
I 2-layers (num. of adaptive weights)
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Deterministic approach: minimize error function:

Err(~θ) =
1

2

m∑
i=1

||h(~xi, ~θ)− ~yi||2

Probabilistic approach

I Regression
assume one single out put y and Gaussian distributed with mean
dependent on the NN output:

p(y | ~x, ~θ) = N (y | h(~x, ~θ), β1)

assume h to be I(·)
(~x, ~y) = {(~x1, y1) . . . (~xm, ym)}
likelihood L(~θ) = p(~y|~x, ~θ, β) =

∏m
i=1 p(y

i | ~xi, ~θ, β)

− logL(~θ) = β

2

m∑
i=1

{h(~xi, ~θ)− yi}2 − m

2
lnβ +

α

2
ln(2π)

We minimize in ~θ and β
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find ~θML minimizing: E(~θ) = β
2

∑m
i=1{h(~xi, ~θ)− yi}2 (nonconvex)

find βML substituting ~θML in 1
βML

=
∑m
i=1

1
m{h(~x

i, ~θ)− yi}2

If multiple independent outputs, ie, ~y: E(~θ) = β
2

∑m
i=1 ||h(~xi, ~θ)− yi||2

Note that for ŷk = ak: ∂E
∂ak

= ŷk − yk

I Binary classification
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