
DM825

Introduction to Machine Learning

Lecture 6
Training Neural Networks

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

TrainingOutline

1. Training

2

TrainingOutline

1. Training

3

TrainingTraining
Deterministic approach: minimize error function:

Err(~θ) =
1

2

m∑
i=1

‖ h(~xi, ~θ)− ~yi ‖2

Probabilistic approach

I Regression
assume one single out put y and Gaussian distributed with mean
dependent on the NN output:

p(y | ~x, ~θ) = N (y | h(~x, ~θ), β1)

assume h to be I(·)
(~x, ~y) = {(~x1, y1) . . . (~xm, ym)}
likelihood L(~θ) = p(~y|~x, ~θ, β) =

∏m
i=1 p(y

i | ~xi, ~θ, β)

− logL(~θ) = β

2

m∑
i=1

{h(~xi, ~θ)− yi}2 − m

2
lnβ +

α

2
ln(2π)

We minimize in ~θ and β
4

Training

find ~θML minimizing: E(~θ) = β
2

∑m
i=1{h(~xi, ~θ)− yi}2 (nonconvex)

find βML substituting ~θML in 1
βML

=
∑m
i=1

1
m{h(~x

i, ~θ)− yi}2

If multiple independent outputs, ie, ~y: E(~θ) = β
2

∑m
i=1 ||h(~xi, ~θ)− yi||2

Note that for ŷk = ak: ∂E
∂ak

= ŷk − yk

I Binary classification

5

TrainingBack Propagation Algorithm
Goal: finding efficient technique to evaluate the gradient of E(~θ), ie,
computing derivatives of E(~θ)

Assumption on activation functions: arbitrary differentiable (eg, sigmoidal
hidden units)

E(~θ) =

m∑
i=1

Ei(~θ)

we evaluate ∇iE(~θ) (accumulated in the batch case).

For a simple linear model yk =
∑
j θjkxj

Let ŷk be the output at the kth node of output units thus ŷk = h(~x, ~θ)

Ei =
1

2

∑
k

(ŷik − yik)2

∂Ei
∂θjk

= (ŷijk − yijk)xijk

6

Training

With more layers
each unit computes:

al =
∑
j

θjlzj

zl = f(al) non linear activation function

For chain rule of partial derivative:
∂E

∂θjl
=
∂E

∂al

∂al
∂θjl

that is, the error depends on θjl only via al
We define the errors:

δl ≡
∂E

∂al

thus

∂E

∂θjl
= δlzj

which resembles (ŷijk − yijk)xijk.
δl from head node and zj output from tail
node 7

Training

How do we calculate δ?

δk = ŷ − yk at the output, saw earlier

At other nodes: variations in al have effect in E via ak

δl =
∂E

∂al
=

∑ ∂E

∂ak

∂ak
∂al

ak =
∑
k

θlkzl

zl = f(al)

δl = f ′(al)
∑
k

θlkδk backward propagation formula

8

TrainingBackward Propagation Algorithm

1. for an observation i, apply forward propagation to ~xi to find activations

al =
∑
j

θjlzj

zl = f(al) non linear activation function

2. evaluate δk ∀ output units

3. backpropagate δs to obtain δl for each hidden unit

4. calculate derivatives
∂Ei

∂θjl
= δlzj

5. apply update rule:

θt+1
jl ≡ θ

t
jl − α∇E(~θt) = θtjl − α

∂Ei(~θt)

∂θjl

9

Training

I if batch implementation then

∂E(~θt)

∂θjl
=

k∑
i=1

∂Ei(~θt)

∂θjl

I computation time: O(|E|) for forward propagation and O(|E|) for
backward propagation

I alternative approach: numerical differentiation: it can be used if f ′(a) is
not known and to verify implementation.

∂E(~θt)

∂θjl
=
Ei(θjl + ε)− Ei(θjl)

ε
, ε� 1

but this takes O(|E|2)

10

Training

The number of hidden nodes, M , is a parameter to tune via validation. To
avoid overfitting:

I regularized error

Ẽ(~θ) = E(~θ) +
λ

2
~θT ~θ

I early stopping in gradient descent: use validation set to decide when to
stop

11

TrainingExample

j l

k

θ
(1)
jl

θ
(2)
lk

output unit: linear
activation function:
yk = ak

hidden units:

h(a) = tanh(a)

=

12

	Training

