DM825
Introduction to Machine Learning

Lecture 6
 Training Neural Networks

Marco Chiarandini
Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Training

Outline

[^0]
Training

Deterministic approach: minimize error function:

$$
\operatorname{Err}(\vec{\theta})=\frac{1}{2} \sum_{i=1}^{m}\left\|h\left(\vec{x}_{i}, \vec{\theta}\right)-\vec{y}_{i}\right\|^{2}
$$

Probabilistic approach

- Regression assume one single out put y and Gaussian distributed with mean dependent on the NN output:

$$
p(y \mid \vec{x}, \vec{\theta})=\mathcal{N}\left(y \mid h(\vec{x}, \vec{\theta}), \beta^{1}\right)
$$

assume h to be $I(\cdot)$
$(\vec{x}, \vec{y})=\left\{\left(\vec{x}^{1}, y^{1}\right) \ldots\left(\vec{x}^{m}, y^{m}\right)\right\}$
likelihood $\mathcal{L}(\vec{\theta})=p(\vec{y} \mid \vec{x}, \vec{\theta}, \beta)=\prod_{i=1}^{m} p\left(y^{i} \mid \vec{x}^{i}, \vec{\theta}, \beta\right)$

$$
-\log \mathcal{L}(\vec{\theta})=\frac{\beta}{2} \sum_{i=1}^{m}\left\{h\left(\vec{x}^{i}, \vec{\theta}\right)-y^{i}\right\}^{2}-\frac{m}{2} \ln \beta+\frac{\alpha}{2} \ln (2 \pi)
$$

We minimize in $\vec{\theta}$ and β
find $\vec{\theta}_{M L}$ minimizing: $E(\vec{\theta})=\frac{\beta}{2} \sum_{i=1}^{m}\left\{h\left(\vec{x}^{i}, \vec{\theta}\right)-y^{i}\right\}^{2}$ (nonconvex)
find $\beta_{M L}$ substituting $\vec{\theta}_{M L}$ in $\frac{1}{\beta_{M L}}=\sum_{i=1}^{m} \frac{1}{m}\left\{h\left(\vec{x}^{i}, \vec{\theta}\right)-y^{i}\right\}^{2}$
If multiple independent outputs, ie, $\vec{y}: E(\vec{\theta})=\frac{\beta}{2} \sum_{i=1}^{m}\left\|h\left(\vec{x}^{i}, \vec{\theta}\right)-y^{i}\right\|^{2}$
Note that for $\hat{y}_{k}=a_{k}: \frac{\partial E}{\partial a_{k}}=\hat{y}_{k}-y_{k}$

- Binary classification

Back Propagation Algorithm

Goal: finding efficient technique to evaluate the gradient of $E(\vec{\theta})$, ie, computing derivatives of $E(\vec{\theta})$

Assumption on activation functions: arbitrary differentiable (eg, sigmoidal hidden units)

$$
E(\vec{\theta})=\sum_{i=1}^{m} E_{i}(\vec{\theta})
$$

we evaluate $\nabla_{i} E(\vec{\theta})$ (accumulated in the batch case).
For a simple linear model $y_{k}=\sum_{j} \theta_{j k} x_{j}$
Let \hat{y}_{k} be the output at the k th node of output units thus $\hat{y}_{k}=h(\vec{x}, \vec{\theta})$

$$
\begin{aligned}
& E_{i}=\frac{1}{2} \sum_{k}\left(\hat{y}_{k}^{i}-y_{k}^{i}\right)^{2} \\
& \frac{\partial E_{i}}{\partial \theta_{j k}}=\left(\hat{y}_{j k}^{i}-y_{j k}^{i}\right) x_{j k}^{i}
\end{aligned}
$$

With more layers
each unit computes:

$$
\begin{aligned}
a_{l} & =\sum_{j} \theta_{j l} z_{j} \\
z_{l} & =f\left(a_{l}\right)
\end{aligned}
$$

non linear activation function

For chain rule of partial derivative:

$$
\frac{\partial E}{\partial \theta_{j l}}=\frac{\partial E}{\partial a_{l}} \frac{\partial a_{l}}{\partial \theta_{j l}}
$$

that is, the error depends on $\theta_{j l}$ only via a_{l}
We define the errors:

$$
\delta_{l} \equiv \frac{\partial E}{\partial a_{l}}
$$

thus

$$
\frac{\partial E}{\partial \theta_{j l}}=\delta_{l} z_{j}
$$

which resembles $\left(\hat{y}_{j k}^{i}-y_{j k}^{i}\right) x_{j k}^{i}$.
δ_{l} from head node and z_{j} output from tail node

How do we calculate δ ?

$$
\delta_{k}=\hat{y}-y_{k} \quad \text { at the output, saw earlier }
$$

At other nodes: variations in a_{l} have effect in E via a_{k}

$$
\begin{array}{rlrl}
\delta_{l}=\frac{\partial E}{\partial a_{l}}=\sum \frac{\partial E}{\partial a_{k}} \frac{\partial a_{k}}{\partial a_{l}} & a_{k} & =\sum_{k} \theta_{l k} z_{l} \\
z_{l} & =f\left(a_{l}\right)
\end{array}
$$

$$
\delta_{l}=f^{\prime}\left(a_{l}\right) \sum_{k} \theta_{l k} \delta_{k}
$$

backward propagation formula

Backward Propagation Algorithm

1. for an observation i, apply forward propagation to \vec{x}^{i} to find activations

$$
a_{l}=\sum_{j} \theta_{j l} z_{j}
$$

$$
z_{l}=f\left(a_{l}\right) \quad \text { non linear activation function }
$$

2. evaluate $\delta_{k} \forall$ output units
3. backpropagate $\delta \mathbf{s}$ to obtain δ_{l} for each hidden unit
4. calculate derivatives

$$
\frac{\partial E^{i}}{\partial \theta_{j l}}=\delta_{l} z_{j}
$$

5. apply update rule:

$$
\theta_{j l}^{t+1} \equiv \theta_{j l}^{t}-\alpha \nabla E\left(\vec{\theta}^{t}\right)=\theta_{j l}^{t}-\alpha \frac{\partial E^{i}\left(\vec{\theta}^{t}\right)}{\partial \theta_{j l}}
$$

- if batch implementation then

$$
\frac{\partial E\left(\vec{\theta}^{t}\right)}{\partial \theta_{j l}}=\sum_{i=1}^{k} \frac{\partial E^{i}\left(\vec{\theta}^{t}\right)}{\partial \theta_{j l}}
$$

- computation time: $O(|E|)$ for forward propagation and $O(|E|)$ for backward propagation
- alternative approach: numerical differentiation: it can be used if $f^{\prime}(a)$ is not known and to verify implementation.

$$
\frac{\partial E\left(\vec{\theta}^{t}\right)}{\partial \theta_{j l}}=\frac{E^{i}\left(\theta_{j l}+\epsilon\right)-E^{i}\left(\theta_{j l}\right)}{\epsilon}, \quad \epsilon \ll 1
$$

but this takes $O\left(|E|^{2}\right)$

The number of hidden nodes, M, is a parameter to tune via validation. To avoid overfitting:

- regularized error

$$
\tilde{E}(\vec{\theta})=E(\vec{\theta})+\frac{\lambda}{2} \vec{\theta}^{T} \vec{\theta}
$$

- early stopping in gradient descent: use validation set to decide when to stop

Example

output unit: linear activation function:
$y_{k}=a_{k}$
hidden units:

$$
h(a)=\tanh (a)
$$

[^0]: 1. Training
