DM825 Introduction to Machine Learning

Lecture 6 Training Neural Networks

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

Training

1. Training

2

Outline

Training

1. Training

3

Training

Deterministic approach: minimize error function:

$$Err(\vec{\theta}) = \frac{1}{2} \sum_{i=1}^{m} \| h(\vec{x}_i, \vec{\theta}) - \vec{y}_i \|^2$$

Probabilistic approach

Regression

assume one single out put \boldsymbol{y} and Gaussian distributed with mean dependent on the NN output:

 $p(y \mid \vec{x}, \vec{\theta}) = \mathcal{N}(y \mid h(\vec{x}, \vec{\theta}), \beta^1)$

assume *h* to be $I(\cdot)$ $(\vec{x}, \vec{y}) = \{ (\vec{x}^1, y^1) \dots (\vec{x}^m, y^m) \}$ likelihood $\mathcal{L}(\vec{\theta}) = p(\vec{y} | \vec{x}, \vec{\theta}, \beta) = \prod_{i=1}^m p(y^i | \vec{x}^i, \vec{\theta}, \beta)$ $\log \mathcal{L}(\vec{\theta}) = \int_{-\infty}^{\beta} \sum_{i=1}^m (h(\vec{x}^i, \vec{\theta}) - x^i)^2 - m \ln \theta + \alpha \ln \theta$

$$-\log \mathcal{L}(\vec{\theta}) = \frac{\beta}{2} \sum_{i=1}^{N} \{h(\vec{x}^{i}, \vec{\theta}) - y^{i}\}^{2} - \frac{m}{2} \ln \beta + \frac{\alpha}{2} \ln(2\pi)$$

We minimize in $\vec{\theta}$ and β

find $\vec{\theta}_{ML}$ minimizing: $E(\vec{\theta}) = \frac{\beta}{2} \sum_{i=1}^{m} \{h(\vec{x}^i, \vec{\theta}) - y^i\}^2$ (nonconvex) find β_{ML} substituting $\vec{\theta}_{ML}$ in $\frac{1}{\beta_{ML}} = \sum_{i=1}^{m} \frac{1}{m} \{h(\vec{x}^i, \vec{\theta}) - y^i\}^2$ If multiple independent outputs, ie, \vec{y} : $E(\vec{\theta}) = \frac{\beta}{2} \sum_{i=1}^{m} ||h(\vec{x}^i, \vec{\theta}) - y^i||^2$ Note that for $\hat{y}_k = a_k$: $\frac{\partial E}{\partial a_k} = \hat{y}_k - y_k$

Binary classification

Training

Back Propagation Algorithm

Goal: finding efficient technique to evaluate the gradient of $E(\vec{\theta}),$ ie, computing derivatives of $E(\vec{\theta})$

Assumption on activation functions: arbitrary differentiable (eg, sigmoidal hidden units)

$$E(\vec{\theta}) = \sum_{i=1}^{m} E_i(\vec{\theta})$$

we evaluate $\nabla_i E(\vec{\theta})$ (accumulated in the batch case).

For a simple linear model $y_k = \sum_j \theta_{jk} x_j$ Let \hat{y}_k be the output at the *k*th node of output units thus $\hat{y}_k = h(\vec{x}, \vec{\theta})$

$$E_i = \frac{1}{2} \sum_k (\hat{y}_k^i - y_k^i)^2$$
$$\frac{\partial E_i}{\partial \theta_{jk}} = (\hat{y}_{jk}^i - y_{jk}^i) x_{jk}^i$$

With more layers each unit computes:

$$a_l = \sum_j \theta_{jl} z_j$$
$$z_l = f(a_l)$$

non linear activation function

For chain rule of partial derivative:

 $\frac{\partial E}{\partial \theta_{jl}} = \frac{\partial E}{\partial a_l} \frac{\partial a_l}{\partial \theta_{jl}}$

that is, the error depends on θ_{jl} only via a_l We define the errors:

$$\delta_l \equiv \frac{\partial E}{\partial a_l}$$

thus

which resembles $(\hat{y}^i_{jk}-y^i_{jk})x^i_{jk}.$ δ_l from head node and z_j output from tail node

How do we calculate δ ?

 $\delta_k = \hat{y} - y_k$ at the output, saw earlier

At other nodes: variations in a_l have effect in E via a_k

$$\delta_{l} = \frac{\partial E}{\partial a_{l}} = \sum \frac{\partial E}{\partial a_{k}} \frac{\partial a_{k}}{\partial a_{l}} \qquad \qquad a_{k} = \sum_{k} \theta_{lk} z_{l}$$
$$z_{l} = f(a_{l})$$

$$\delta_l = f'(a_l) \sum_k \theta_{lk} \delta_k$$

backward propagation formula

Backward Propagation Algorithm

Training

- 1. for an observation i, apply forward propagation to \vec{x}^i to find activations
 - $a_l = \sum_j heta_{jl} z_j$ $z_l = f(a_l)$ non linear activation function
- 2. evaluate $\delta_k \forall$ output units
- 3. backpropagate δ s to obtain δ_l for each hidden unit
- 4. calculate derivatives

 $\frac{\partial E^i}{\partial \theta_{jl}} = \delta_l z_j$

5. apply update rule:

$$\theta_{jl}^{t+1} \equiv \theta_{jl}^t - \alpha \nabla E(\vec{\theta^t}) = \theta_{jl}^t - \alpha \frac{\partial E^i(\vec{\theta^t})}{\partial \theta_{jl}}$$

if batch implementation then

$$\frac{\partial E(\vec{\theta^t})}{\partial \theta_{jl}} = \sum_{i=1}^k \frac{\partial E^i(\vec{\theta^t})}{\partial \theta_{jl}}$$

- \blacktriangleright computation time: O(|E|) for forward propagation and O(|E|) for backward propagation
- ► alternative approach: numerical differentiation: it can be used if f'(a) is not known and to verify implementation.

$$\frac{\partial E(\vec{\theta^t})}{\partial \theta_{jl}} = \frac{E^i(\theta_{jl} + \epsilon) - E^i(\theta_{jl})}{\epsilon}, \qquad \epsilon \ll 1$$

but this takes $O(|E|^2)$

The number of hidden nodes, $M_{\rm r}$ is a parameter to tune via validation. To avoid overfitting:

► regularized error

$$\tilde{E}(\vec{\theta}) = E(\vec{\theta}) + \frac{\lambda}{2}\vec{\theta}^T\vec{\theta}$$

early stopping in gradient descent: use validation set to decide when to stop

Example

output unit: linear activation function:

 $y_k = a_k$

hidden units:

 $\begin{array}{l}h(a) = \tanh(a) \\ = \end{array}$