DM825

Introduction to Machine Learning

Lecture 6
Training Neural Networks

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline e

1. Training

Outline Treinin

1. Training

Training

Training

Deterministic approach: minimize error function:

m

Err(@ Z | h(,.6) - 5 |

Probabilistic approach

» Regression
assume one single out put y and Gaussian distributed with mean
dependent on the NN output:

Py | 7,0) = Ny | bz 6), ")
assume h to be I(+)
@0 = @y . @, y™)}
likelihood £(8) = p(§77,0.) = [T/, p(y' | #,0.5)

—log L(§ 3Z{hf 0) —y'}? — —h ’3—}—5111(277)

We minimize in # and I53

Training

find 6, minimizing: E() =8 Zm {h(z,0) — J'}2 (nonconvex)
find B/, substituting @17, in m = anl m{h(ﬁ 0) —y }2

If multiple independent outputs, ie, 7: E(=£ ZZ 1R (@) y||?
Note that for 7, = ay: 3@ = Uk — Yk

» Binary classification

Training

Back Propagation Algorithm

Goal: finding efficient technique to evaluate the gradient of E(g) ie,

—

computing derivatives of E(0)

Assumption on activation functions: arbitrary differentiable (eg, sigmoidal
hidden units)

E6) =Y E(0)

—

we evaluate V; F(f) (accumulated in the batch case).

For a simple linear model v, = Zj Ok

Let ¢ be the output at the kth node of output units thus ¢, = h(Z,)
1 i N
Ei=3 Z(Z/k; —y3.)’?
k

% = (’!/;'k: - ?/}k;)”{?k
ik

Training

With more layers
each unit computes:

a; = E 9‘7'[,2‘]'
J

2= fla) non linear activation function

For chain rule of partial derivative:

OF OF Oq;
that is, the error depends on 6,; only via ¢,
We define the errors:

_OFE
b (r)(ll
thus
OE which resembles (T = Vo) o
90~ 0125 0; from head node and z; output from tail
ik node '

How do we calculate §7

Training

O0r =17 — Yk at the output, saw earlier

At other nodes: variations in a; have effect in E via ay,

oF OF Oay,
0= 5 = 2 Pa B

o = f'(ar) Z 0110
k

ap = E Oz
%

2= f(a)

backward propagation formula

Training

Backward Propagation Algorithm

1. for an observation i, apply forward propagation to #* to find activations
a; = Z GﬂZj
J

21 = flay) non linear activation function

2. evaluate 0, V output units
3. backpropagate ds to obtain ¢; for each hidden unit

4. calculate derivatives
OE"

5. apply update rule:

Hﬁl = 0;1 —aVE(@) = 9 —a——

Training

» if batch implementation then

it

5 r 9

» computation time: O(|E|) for forward propagation and O(|E]) for
backward propagation

> alternative approach: numerical differentiation: it can be used if f'(a) is
not known and to verify implementation.

f)E(GT) _ Ez(gﬂ + 6) — Ei(ﬁjl)‘ c< 1
(r%)j[€ '

EP?)

but this takes O(

10

Training

The number of hidden nodes, M, is a parameter to tune via validation. To
avoid overfitting:

» regularized error

E@) = E®#) + 5(71‘(5’

» early stopping in gradient descent: use validation set to decide when to
stop

11

Example

output unit: linear

activation function:

Yr = ag

Training

hidden units:

h(a) = tanh(a)

12

	Training

