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I Discriminative approach learns p(y|x)

I Generative approach learns p(x|y)
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1. Model p(y) and p(x | y)

2. learn parameters of the models by maximizing joint likelihood
p(x, y) = p(x|y)p(y)

3. express

p(y | x) =
p(x | y)p(y)

p(x)
=

p(x | y)p(y)∑
y∈Y p(x | y)p(y)

4. predict

arg max
y

p(y | x) = arg max
y

p(x | y)p(y)

p(x)

= arg max
y

p(x | y)p(y)∑
y∈Y p(x | y)p(y)

= arg max
y

p(x | y)p(y)
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Let ~x be a vector of continuous variables
We will assume p(~x | y) is a multivariate Gaussian distribution

p(~x, ~µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
1

2
(~x− ~µ)TΣ−1(~x− ~µ)

)
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Step 1: we model the probabilities:

y ∼ Bernoulli(ϕ)
x|y = 0 ∼ N(µ0,Σ)
x|y = 1 ∼ N(µ1,Σ)

that is: p(y) = φy(1− φ)1−y

p(x | y = 0) = N (~µ0,Σ) = 1
(2π)n/2|Σ|1/2 exp

(
1
2 (~x− ~µ0)TΣ−1(~x− ~µ0)

)
p(x | y = 1) = N (~µ1,Σ) = 1

(2π)n/2|Σ|1/2 exp
(
1
2 (~x− ~µ1)TΣ−1(~x− ~µ1)

)
Step 2: we express the joint likelihood of a set of data i = 1 . . .m:

l(φ, µ0, µ1,Σ) =

m∏
i=1

p(xi, yi)

=

m∏
i=1

p(xi | yi)p(yi)

We substitute the model assumptions above and maximize log l(φ, µ0, µ1,Σ)
in φ, µ0, µ1,Σ
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Solutions:

φ =

∑m
i=1 y

i

m
=

∑
i I{yi = 1}

m

µ0 =

∑
i I{yi = 0}xi∑
i I{yi = 0}

µ1 =

∑
i I{yi = 1}xi∑
i I{yi = 1}

Σ = ...

Compare with logistic regression where we maximized the conditional
likelihood instead!
Step 3 and 4:

arg max
y

p(y | x) = arg max
y

p(x | y)p(y)

p(x)

arg max
y

p(x | y)p(y)
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I In GDA: x | y ∼ Gaussian =⇒logistic posterior for p(y = 1 | x) (see sec
4.2 of B1)

I In logistic regression we model p(y | x) as logistic also other
distributions, eg:

x|y = 0 ∼ Poisson(λ0)
x|y = 1 ∼ Poisson(λ1)

x|y = 0 ∼ ExpFam(η0)
x|y = 1 ∼ ExpFam(η1)

I hence we make stronger assumptions in GDA. If we do not know where
the data come from the logistic regression analysis would be more
robust. If we know then GDA may perform better.
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I When Σ is the same for all class conditional densities then the decision
boundaries are linear  Linear discriminative analysis (LDA)

I When the class conditional densities do not share Σ then quadratic
discriminant
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permits the calculation of the joint distribution of a set of random variables
using only conditional probabilities.

Consider the set of events A1, A2, . . . An. To find the value of the joint
distribution, we can apply the definition of conditional probability to obtain:

Pr(An, An−1, . . . , A1) = Pr(An | An−1, . . . , A1) Pr(An−1, An−2, . . . , A1)

repeating the process with each final term:

Pr(∩nk=1Ak) =

n∏
k=1

Pr(Ak | ∩kj=1Aj)

For example:

Pr(A4, A3, A2, A1) = Pr(A4|A3, A2, A1) Pr(A3|A2, A1) Pr(A2|A1) Pr(A1)
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We want to decide whether an email is spam y ∈ {0, 1} given some discrete
features ~x.
How to represent emails by a set of features?
Binary array, each element corresponds to a word in the vocabulary and the
bit indicates whether the word is present or not in the data.

~x =



1
0
0
0
1
...
0
0



~x ∈ {0, }n
n = 50000 (large number)
250000 possible bit vectors
250000−1 parameters to learn

We collect examples, look at those that are spam y = 1 and learn
p(x | y = 1), then at those y = 0 and learn p(x | y = 0)
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Step 1: For a given example i we treat each xij independently

p(y) ∼ φy
∀j : p(xj |y = 0) ∼ φj|y=0

∀j : p(xj |y = 1) ∼ φj|y=1

Step 2: Maximize joint likelihood
Assume xjs are conditionally independent given y. By chain rule:

p(x1, . . . , x50000) = p(x1 | y)p(x2 | y, x1)p(x3 | y, x1, x2) . . .

= p(x1 | y)p(x2 | y)p(x3 | y) . . . cond. indep.

=

m∏
i=1

p(xi | y)
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l(φy, φj|y=0, φj|y=1) =

m∏
i=1

p(~xi, yi)

=

m∏
i=1

n∏
j=1

p(xij | yi)p(yi)

Solution:

φy =

∑
i I{yi = 1}

m

φj|y=1 =

∑
i I{yi = 1, xij = 1}∑

i I{yi = 1}

φj|y=0 =

∑
i I{yi = 0, xij = 1}∑

i I{yi = 0}

Step 3 and 4: prediction as usual but remember to use logarithms
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what if p(x300000|y = 1) = 0 and p(x300000|y = 0) = 0 because we do not
have any observation in the training set with that word?

p(y = 1|x) =
p(x | y = 1)p(y = 1)

p(x | y = 1)p(y = 1) + p(x | y = 0)p(y = 0)

=

∏50000
j=1 p(xj | y = 1)p(y = 1)∏50000

j=1 p(xj | y = 1)p(y = 1) +
∏50000
j=1 p(xj | y = 0)p(y = 0)

=
0

0 + 0

Laplace smoothing: assume some observations

p(x|y) =
c(x, y) + k

c(y) + k|x| φy =

∑
i I{yi = 1}+ 1

m+K

φj|y=1 =

∑
i I{yi = 1, xij = 1}+ 1∑

i I{yi = 1}+ 2

φj|y=0 =

∑
i I{yi = 0, xij = 1}+ 1∑

i I{yi = 0}+ 2 17
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We look at a generalization of the previous Naive Bayes that allows to take
into account also of the number of times a word appear as well as the
position.

Let xi ∈ {1, 2, . . .K}, for example, a continuous variable discretized in
buckets

Let [xi1, x
i
2, . . . x

i
ni

], xij ∈ {1, 2, . . . ,K} represent the word in position j, ni
# of word in the ith email
Step 1:

p(y) ∼ φy
∀j : p(xj = k|y = 0) ∼ φj|y=0

∀j : p(xj = k|y = 1) ∼ φj|y=1

assumed that p(xj = k|y = 0)
is the same for all j

φj|y=0 are parameters of multinomial Bernoulli distributions
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Step 2: Joint likelihood:

Solution:
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Support vector machines: discriminative approach that implements a non
linear decision with basis in linear classifiers.

I lift points to a space where they are linearly separable
I find linear separator

Let’s focus first on how to find a linear
separator. Desiderata:
predict “1” iff ~θT~x ≥ 0

predict “0” iff ~θT~x < 0
also wanted:
if ~θT~x� 0 very confident that y = 1

if ~θT~x� 0 very confident that y = 0

Hence it would be nice if:
∀i : yi = 1 we have ~θT~x� 0

∀i : yi = 0 we have ~θT~x� 0
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Assume training set is linearly separable

Let’s change notation:
y ∈ {−1, 1} (instead of {0, 1} like in GLM)
Let’s have h output values {−1, 1}:

f(z) = sign(z)

{
1 ifz ≥ 0

−1 ifz < 0

(hence no probabilities like in logistic regression)

h(~θ, ~x) = f(~θ~x), ~x ∈ Rn+1, ~θ ∈ Rn+1

h(~θ, ~x) = f(~θ~x+ θ0), ~x ∈ Rn, ~θ ∈ Rn, θ0 ∈ R
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Def.: The functional margin of a hyperplane (~θ, θ0) w.r.t. a specific example
(xi, yi) is:

γ̂i = yi(~θT~xi + θ0)

For the decision boundary ~θT~x+ θ0 that defines the linear boundary:
we want ~θT~x� 0 if yi = +1

we want ~θT~x� 0 if yi = −1

If yi(~θT~xi + θ0) > 0 then i is classified correctly.
Hence, we want to maximize yi(~θT~xi + θ0).
This can be achieved by maximizing the worst case for the training set

γ̂ = min
i
γ̂i

Note: scaling ~θ → 2~θ, θ0 → θo would make γ̂ arbitrarily large. Hence we
impose: ‖ ~θ ‖= 1
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hyperplane: set of the form {~x | ~aT~x = ~b} (~a 6= 0)

x0

~aT~x = ~b

~aT

~x

I ~a is the normal vector

I hyperplanes are affine and convex sets
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Def. the geometric margin γi is the
distance of example i from the linear
separator, A-B

~θ
‖θ‖ unit vector orthogonal to the separating hyperplane

A-B: xi − γi ~θ

‖~θ‖

since B is on the linear separator, substituting the part above in ~θT~x+ θ0 = 0:

~θT

(
xi − γi

~θ

‖ ~θ ‖

)
+ θ0 = 0
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Solving for γi:

~θTxi + θ0 = γi
~θT ~θ

‖ ~θ ‖

γi =
~θ

‖ ~θ ‖

T

xi +
θ0

‖ ~θ ‖

This was for the positives. We can develop the same for the negatives but we
would have a negative sign. Hence the quantity:

γi = yi

(
~θ

‖ ~θ ‖

T

xi +
θ0

‖ ~θ ‖

)
will be always positive.
To maximize the distance of the line from all points we maximize the worst
case, that is:

γ = min
i
γi
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I γ = γ̂

‖~θ‖

I Note that if ‖ ~θ ‖= 1 then γ̂i = γi the two marginal correspond

I geometric margin is invariant to scaling ~θ → 2~θ, θ0 → θo
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max
γ~θ,θ0

γ (1)

γ ≤ yi(~θT~x+ θ0) ∀i = 1, . . . ,m (2)

‖ ~θ ‖= 1 (3)

(2) implements γ = min γi

(3) is a nonconvex constraint thanks to which the two marginals are the same.
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