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Functional and Geometric Margins
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Support Vector Machines:

1. Functional and Geometric Margins
2. Optimal Margin Classifier
3. Lagrange Duality
4. Karush Kuhn Tucker Conditions
5. Solving the Optimal Margin
6. Kernels
7. Soft margins
8. SMO Algorithm
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I Binary classification.

I y ∈ {−1, 1} (instead of {0, 1} like in GLM)

I Let’s have h(~θ, ~x) output values {−1, 1}:

f(z) = sign(z)

{
1 ifz ≥ 0

−1 ifz < 0

(hence no probabilities like in logistic regression)

I h(~θ, ~x) = f(~θ~x+ θ0), ~x ∈ Rn, ~θ ∈ Rn, θ0 ∈ R

I Assume for now training set is linearly separable
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SVM determine model parameters by solving a convex optimization problem
and hence a local optimal solution is also global optimal.

Margin: smallest distance between the decision boundary and any of the
samples.

The location of the boundary is determined by a subset of the data points,
known as support vectors
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I functional margin:

γ̂i = yi(~θT~xi + θ0) =⇒ γ̂ = min
i
γ̂i

requires a normalization condition
I geometric margin:

γi = yi

(
~θ

‖ ~θ ‖

T

xi +
θ0

‖ ~θ ‖

)
=⇒ γ = min

i
γi

scale invariant
I γ = γ̂

‖~θ‖

I if ‖ ~θ ‖= 1 then γ̂i = γi the two margins correspond
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Looking at the geometric margin:

(OPT1) : max
γ,~θ,θ0

γ

γ ≤ yi(~θT~xi + θ0) ∀i = 1, . . . ,m

‖ ~θ ‖= 1

Alternatively, looking at functional margins and recalling that γ = γ̂

‖~θ‖
:

(OPT2) : max
γ̂,~θ,θ0

γ̂

‖ ~θ ‖
γ̂ ≤ yi(~θT~xi + θ0) ∀i = 1, . . . ,m
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For the functional margins we can fix the scale, for the geometric margin no
scaling problem. Then we can arbitrary fix γ̂ = 1

(OPT3) : min
~θ,θ0

1

2
‖ ~θ ‖2

1 ≤ yi(~θT~xi + θ0) ∀i = 1, . . . ,m

where we used that:
max 1/‖ ~θ ‖ = min ‖ ~θ ‖

and removed the square root because monotonous in ‖ ~θ ‖=
√
~θT ~θ.

This problem is a convex optimization problem, it has convex quadratic
objective function and linear constraints, hence it can be solved optimally and
efficiently
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minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m

objective and constraint functions are convex:

fi(αx+ βy) ≤ αfi(x) + βfi(y)

if α+ β = 1, α ≥ 0, β ≥ 0
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standard form problem (not necessarily convex)

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, ...,m

hi(x) = 0, i = 1, ..., p

variable x ∈ Rn, domain D, optimal value p∗

Lagrangian: L : Rn × Rm × Rp → R, with dom L = D × Rm × Rp,

L(x, α, β) = f0(x) +

m∑
i=1

αifi(x) +

p∑
i=1

βhi(x)

I weighted sum of objective and constraint functions
I αi is Lagrange multiplier associated with fi(x) ≤ 0

I βi is Lagrange multiplier associated with hi(x) = 0

I ~α and ~β are dual or Lagrangian variables
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Lagrange dual function: LD : Rm × Rp → R

LD(α, β) = min
x∈D
L(x, α, β) = min

x∈D

(
f0(x) +

m∑
i=1

αifi(x) +

p∑
i=1

βhi(x)

)
LD is concave, can be −∞ for some α and β

Lower bound property: for a feasible x̃
1. ∀α ≥ 0, β LD(α, β) ≤ p∗

2. LP (x) = maxα≥0,β (LD(α, β)) ≤ p∗ (best lower bound, it may be = p∗)

Proof of (1): for any x̃ feasible and α ≥ 0 :

L(x̃, α, β) = f0(x̃) +

m∑
i=1

αifi(x̃) +

p∑
i=1

βhi(x̃) ≤ f0(x̃)

hence

LD(α, β) = min
x∈D
L(x, α, β) ≤ L(x̃, α, β) ≤ f0(x̃)

(2) is true because (1) true for any α, β.
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If f0 and gi are convex and hi affine,

d∗ = max
α≥0,β

(LD(α, β)) = p∗

so we can solve the dual in place of the primal.
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standard form problem
(not necessarily convex)

minimize f0(x)
subject to gi(x) ≤ bi, i = 1, ...,m

variable x ∈ Rn, f, g nonlinear, f : Rn → R,
g : Rn → Rm

Necessary conditions for optimality (local
validity):

∇f(x0) =
∑m
i=1 λi∇gi(x0)

λi ≥ 0∀i∑m
i=1 λi(gi(x0)− bi) = 0

gi(x0)− bi ≤ 0
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Let’s go back to our problem:

(OPT3) : min
~θ,θ0

1

2
‖ ~θ ‖2

1 ≤ yi(~θT~xi + θ0) ∀i = 1, . . . ,m

L(~θ, θ0, ~α) =
1

2
‖ ~θ ‖2 −

m∑
i=1

αi

(
yi(~θT~xi + θ0)− 1

)
we find the dual form by solving in ~θ, θ0

LD(~α) = min
~θ,θ0

L(~θ, θ0, ~α)

∇~θL(~θ, θ0, ~α) = ~θ −
m∑
i=1

αiy
i~xi = 0 =⇒ ~θ =

m∑
i=1

αiy
i~xi

∂L(~θ, θ0, ~α)
∂θ0

= −
m∑
i=1

αiy
iαi = 0 =⇒

m∑
i=1

αiy
iαi = 0
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Substituting in L(~θ, θ0, ~α):

LD(~θ) =
1

2

(
m∑
i=1

αiy
i~xi

) m∑
j=1

αjy
j~xj


−

m∑
i=1

αi

yi
(

m∑
j=1

αjy
j~xj)~xi + θ0

− 1


=

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

yiyjαiαj〈~xi~xj〉
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We are left with the dual problem:

max
~α

W (~α) =

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

yiyjαiαj〈~xi~xj〉

s.t. αi ≥ 0 ∀i = 1 . . .m
m∑
i=1

αiy
i = 0

I This problem is in m variables. Problem (OPT3) has D variables and
quandratic programming can be solved in O(D3). If D � n then it
seems we did not earned a lot

I the form above allows us to use kernel trick and have even infinite
dimensions (D � m)

I the use of the kernel and its constraint of being positive semidefinite
ensures that the problem is bounded from below.
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In addition, an optimal solution satisfies the KKT conditions on (OPT3):

yi(~θ
T~xi + θ0) ≥ 1

αi[yi(~θ
T~xi + θ0)− 1] = 0 ∀i

From these we can see that

I if αi > 0, then yi(~θT~xi + θ0) = 1 (~xi is on the boundary)

I if yi(~θT~xi + θ0) > 1, ~xi is not on the boundary and αi = 0
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Points where yi(~θT~xi + θ0) > 1 are the support vectors:
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For a new pint ~x predict by:

h(~θ, ~x) = f(~θ~x+ θ0) = sign(~θ~x+ θ0)

= sign

( m∑
i=1

αiy
i~xi

)T
~x+ θ0


= sign

(
m∑
i=1

αiy
i〈~xi, ~x〉+ θ0

)

For the KKT conditions, most trainig data can be discarded after training
and only the points that are support vectors need to be retained for this
computation
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We can derive θ0 by:

θ0 = −
maxi:yi=−1 ~θ

T~xi +mini:yi=1
~θT~xi

2
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