
Written Exam
Introduction to Linear and Integer Programming

(DM825)

Department of Mathematics and Computer Science
University of Southern Denmark

Thursday, June 15, 2012, 10:00–13:00, U49 and U49B

The rules for the exam are explained in the document Guidelines for the Exam available
from the link:
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The exam consists of 6 tasks and relative subtasks distributed on 8 pages.

The weight in the evaluation of each task and subtask is given in points. The total sum
is 105 points even though the grades will be defined from 0 to 100. The amount of points
assigned to the subtasks are not proportional to the difficulty of the question (rather the
inverse).
A few subtasks are dependent on previous subtasks. One can buy an hint to some subtasks
asking to the exam vigilantes to call the instructor. The cost of an hint to a subtask is
equivalent to the half of the credit of the subtask. That is, if answered correctly after an
hint, the subtask will count for half of its credit.

Remember to justify all your statements. You may refer to results from the textbooks
or the lecture slides. In particular, it is possible to justify a statement by saying that it
derives trivially from a result in the textbook (if this is true!). You may use all methods
or extensions that have been used in the exercise sheets, published during the course.
However, it is not allowed to answer a subtask exclusively by reference to an exercise seen
during the course. Reference to other books (outside the course material) is not accepted
as answer to a task!

You may write your answers in Danish or in English.
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Task 1
Assume that we have a training set consisting of examples (~xi, yi) for i = 1, . . . , n. The
task is a binary classification problem so each label yi is either −1 or +1.
In training a hard margin SVM with bias, the final classifier is ŷ = sign(~θ · ~x + θ0) where
the parameters ~θ and θ0 solve the following primal and dual optimization problems:

Primal: find ~θ, θ0 that
minimize 1

2
‖ ~θ ‖2

subject to yi(~θ · ~xi + θ0) ≥ 1, i = 1, . . . , n

Dual: find αi that
maximize

∑n
i=1 αi − 1

2
αiαjyiyj~xi · xj

subject to αi ≥ 0,
∑n

i=1 αiyi = 0

Subtask 1.a (10 points)

Assume that n = 4, and that x1 = (1, 1)T , x2 = (2, 2)T , x3 = (−1.5,−1.5)T , and x4 =
(4, 4)T . We now train an SVM with bias, and in addition with slack variables. Show that
for any labeling of the four training examples, the optimal parameter vector ~̂θ = (θ̂1, θ̂2)

T

has the property that θ̂1 = θ̂2.

Solution The SVM solution is of the form ~θ =
∑n

i=1 αiyi~xi. Since all the points have

xi1 = xi2, this property has to hold for ~θ as well.

Subtask 1.b (10 points)

Consider the SMO algorithm applied to training a hard-margin SVM with slack variables
and a bias variable. Initially all dual variables αi for i = 1, . . . , n are set to 0. At each step
in the SMO algorithm, two variables αi and αj are chosen with the special heuristic that
yi = yj; these two variables are optimized in the usual way for SMO. What solution will
you find with this constrained SMO procedure? Justify your answer showing the steps of
the SMO algorithm.

Solution Consider first modifying αi and αj and set all the other αk’s to zero. The dual
constraint

∑n
i=1 αiyi = 0 then requires that yiαi + yjαj = 0 since the other αk’s are zero.

When the labels agree, this implies that αi + αj = 0. Since α’s are positive, we can only
have αi = αj = 0. As a result, the SMO algorithm won’t change any α’s from zero.

Subtask 1.c (10 points)

Consider the kernel K(~x, ~z) = ~x ·~z+ 4(~x ·~z)2 where the vectors ~x and ~z are 2-dimensional.
This kernel is equal to an inner product ~φ(x) · ~φ(z) for some definition of φ. What is the
function φ?

Solution Since ~x · ~z = (x1z1)
2 + 2(x1x2)(z1z2) + (x2z2)

2 we have

2



K(~x, ~z) = x1z1 + x2z2 + 4(x1z1)
2 + 8(x1x2)(z1z2) + 4(x2z2)

2

= [x1, x2, 2x
2
1, 2
√

2x1x2, 2x
2
2] · [z1, z2, 2z21 , 2

√
2z1z2, 2z

2
2 ]

Thus φ(~x) = [x1, x2, 2x
2
1, 2
√

2x1x2, 2x
2
2]

Subtask 1.d (5 points)

Consider training an SVM with slack variables, but with no bias variable. The kernel
used is K(~x, ~z); it has the property that for any two points xi and xj in the training set,
−1 < K(~xi, ~xj) < 1. K(~xi, ~xi) < 1 as well. There are n points in the training set. Show
that for having all dual variables αi non-zero (i.e., all points in the training set become
support vectors) the slack-variable constant C must be chosen to be C ≤ 1

n
.

Solution The SVM solution is of the form ~θ =
∑n

i=1 αiyi~xi and in the absence of bias the
KKT condition becomes:

αi[yi(~x
T
i
~θ + θ0)− (1− ξi)] = 0

αi[yi(
n∑

i=1

αiyi~xi~x
T
i )− (1− ξi)] = 0

Then a point is a support vector if αi > 0 which leaves the condition that:

yi(
n∑

j=1

αiyi~xi~x
T
j )− (1− ξi) = 0

with the Kernel trick:

yi(
n∑

j=1

αiyiK(~xi, ~x
T
j ))− (1− ξi) = 0

If a point is a support vector and correctly classified, ie, ξi = 0:

yi(
n∑

j=1

αiyiK(~xi, ~x
T
j )) = 1

If a point is a support vector and wrongly classified, ie, ξi > 0:

yi(
n∑

j=1

αiyiK(~xi, ~x
T
j )) + ξi = 1

yi(
n∑

j=1

αiyiK(~xi, ~x
T
j )) < 1
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Hence

yi(
n∑

j=1

αiyiK(~xi, ~x
T
j )) ≤ 1

yi(
n∑

j=1

αiyiK(~xi, ~x
T
j ) ≤

n∑
j=1

αi|K(~xi, ~xj)
T | ≤

n∑
j=1

αi ≤ 1

We know that 0 < αi ≤ C hence
n∑

j=1

αi ≤
n∑

j=1

C ≤ 1

C ≤ 1

n

Task 2
Let’s consider a test T for an event A. The frequency of false negatives is 0.01, and the
frequency of false positives is 0.

Subtask 2.a (10 points)

A company producing semiconductor chips has a test for processors under the suspicion of
been flawed, e.g., processors that require a particular technology that is known to be risky.
The test has the above characteristics in case of a flaw the test returns a certificate for
it, that is, the wrongly computed operation. Experience says that 20% of the processors
under suspicion do in fact contain some flaws in their functions. A suspicious processor
has a negative test, that is, the test indicates that the processor has no flaw. What is the
probability that the processor is nevertheless flawed?

Solution

A = flawed A = no
T = yes 0.99 0
T = no 0.01 1

Tabel 1: Conditional probabilities P (T | A) characterizing test T for A.

p(A = flawed | T = no) =
p(T = no | A = flawed)p(A = flawed)∑

A p(T = no | A)p(A)

=
0.01 ∗ 0.2

0.01 ∗ 0.2 + 1 ∗ 0.8
= 0.0025
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Subtask 2.b (10 points)

The company decides to test all processors independently of the producing technology, and
use the same test. It is estimated that one out of 1,000 processors is flawed. A processor has
a negative test result. What is the probability that the processor is nevertheless flawed?

Solution

p(A = flawed | T = no) =
p(T = no | A = flawed)p(A = flawed)∑

A p(T = no | A)p(A)

=
0.01 ∗ 0.001

0.01 ∗ 0.001 + 999/1000
= 1× 10−5

Task 3 (10 points)
Consider the Bayesian Network in Figure 1.
Answer and provide a justification to the following questions:

Is Smokes conditionally independent of Bron-
chitis given Fever and Coughing?

Solution No, there is a path from Smoke to
Bronchitis and observing Bronchities or one
of its descendants will explain Smoke.

Figur 1:
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Is Sore Throat conditionally independent of
Smokes given Wheezing?

Solution No, there is an head to head con-
nection and one of the descendant is observed.

Is Influenza conditionally independent of Sore
Throat given Smokes, Bronchitis and Fever?

Solution No, observing Sore Throat tells us
something about Influenza

Is Coughing conditionally independent of Fe-
ver given Wheezing, Influenza, Smokes and
Sore Throat?

Solution Yes, the only path is blocked.

Is Sore Throat conditionally independent of
Coughing given Smokes?

Solution False, there is a path not blocked.

Task 4
Design a Bayesian network that can be used to recognize handwritten digits 0, 1, 2, . . . , 9
from scanned, pixelated images like the ones in Figure 2. Assume for simplification a 9× 9
grid.

Subtask 4.a (5 points)

6



Figur 2:

Explain what are hidden and observation vari-
ables.

Solution The hidden variable(s) are those we are trying to query. Here we are interested
in predicting which digit is actually represented by the image. Thus, we should have a
variable digit ∈ {0, 1, . . . , 9}. The observation variables must allow us to enter into the
Bayesian networks the observations that we make. Here we observe 9× 9 = 81 pixels, each
of which can be black or white: pixel i ∈ {b, w}, i = 1, . . . , 81.

Subtask 4.b (5 points)

Draw the graphical model so that the conditio-
nal independencies are (approximately) reaso-
nable. Explain and motivate your choice.

Solution A naive Bayesian network would work with digit as root node and all others i
pixels as leaves.

Subtask 4.c (5 points)

Give one or more example of useful mediating variables (consider e.g. the desired invariance
property with respect to translations, rotations, etc.)

Solution One could add another root representing an hidden variable for example transal-
tion. In this way neighboring pixels would have a dependency conditional to the digit and
to the type of transformation that has been applied.

Subtask 4.d (5 points)

Explain shortly how you would fill in the conditional probability tables given the samples
in Figure 2.

Solution We could solve a counting problem derived from maximum likelihood approach.
Thus we would have at the root a multinomial variable with equal probability for each
outcome, ie. µk = 1/10 and at each node representing a pixel we would have for each digit
the ratio between the number of times the pixel is black on the corresponding row and the
number of columns n of the matrix represented in Figure 2.

p1,1(p = b | d = 9) =

∑n
i=1 I{pixeli1,1 = b}

n
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Task 5 (10 points)
Consider a binary classification problem with continuous-valued features. If we apply Gaus-
sian discriminant analysis using the same covariance matrix Σ for both classes, then the
resulting decision boundary is linear. Show that if we modeled the two classes using se-
parate covariance matrices Σ0 and Σ1 (i.e., xi | yi = b ∼ N(µb,Σb), for b = 0 or 1) the
decision boundary would be quadratic.

Solution The decision boundary is given by the following equation

log(p = 0 | x) = log(p = 1 | x)

using Bayes rule:

log(x | p = 0) + log(p = 0)− log p(x) = log(x | p = 1) + log(p = 1)− log p(x)

C0 −
1

2
(x− µ0)

TΣ−1
0 (x− µ0) = C1 −

1

2
(x− µ1)

TΣ−1
1 (x− µ1)

This is a quadratic decision boundary in x.

Task 6 (10 points)

Consider a set of models of the form p(y | ~x, ~θh, h) in which ~x is the input vector, y is the
response variable, h indexes the different models and θh is the set of parameters for model
h. Suppose the models have prior probabilities p(h) and that we are given a training set
X = {~x1, . . . , ~xN} and Y = {y1, . . . , yN}. Write down the formulae needed to evaluate the
predictive distribution p(y | ~x,X, Y ) in which the model index is marginalized out.

Solution The required predictive distribution is given by

p(~y | ~x,X, Y ) =
∑
h

p(h)

∫
p(~y | ~x, ~θh, h)p(~θh|X, Y, h)d~θh

where

p(~θh|X, Y, h) =
p(Y |X, ~θh, h)p(~θh | h)

p(Y | X, h)

∝ p(~θ | h)
m∏
i=1

p(yi|~xi, ~θ, h)

= p(~θ | h)
m∏
i=1

(
∑
zih

p(yi|~xi, ~θ, h))
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