Experimental Analysis of Algorithms: What to Measure

Catherine C. McGeoch Amherst College

Theory vs Practice

Predict puck velocities using the new composite sticks.

Experiments on Algorithms

Good news	Bad news
Easy to probe.	Unusual questions = few techniques.
Nearly total experimental control. Simple mechanisms. Model validation not a problem. Fast experiments (often). Tons of data points (often).	Unusually precise questions = need advanced techniques.
	Unusual data = parametric methods are weak.
	Large and infinite sample spaces = sampling difficulties.
	Generalization/abstraction from the computational artifact = extrapolation.
	NP-hard problems = problematic.

Standard statistical techniques

- Comparison (estimation and hypothesis testing): same/different, bigger/smaller.
- 2. Interpolation (linear and nonlinear regression -- fitting models to data.
- 3. *Extrapolation (??)* -- building models of data, explaining phenomena.

parameter

Standard statistical techniques

- 1. Comparison (estimation and hypothesis testing): same/different, Cost bigger/smaller.
- 2. Interpolation (linear and nonlinear regression -- fitting models to data.
- Extrapolation (*) -building models of data, explaining phenomena.

numerical parameter

Standard statistical techniques

- 1. Comparison (estimation and hypothesis testing): same/different, bigger/smaller.
- 2. Interpolation (linear and nonlinear regression -fitting models to data. Interpolation
- 3. *Extrapolation* (*) -- building models, explaining phenomena.

numerical parameter

Some Nonstandard Techniques

- 1. *Graphical analysis (GA)* -- big data sets, unusual questions, interpolation, extrapolation.
- 2. *Exploratory data analysis (EDA)* -- model building, unusual data sets.
- *3. Variance reduction techniques* -- simple mechanisms, complete control.
- 4. *Biased estimators* -- NP-Hard problems, large sample spaces.

Case Study: First Fit Bin Packing

Consider weights in order of arrival; pack each into the first (leftmost) bin that can contain it.

Applications: CD file storage; stock cutting; iPod file storage; generalizations to 2D, 3D...

Bin packing is NP-Hard.

How well does the FF heuristic perform?

Experimental Study of First Fit Bin Packing

Input categories:

- -- *unil*: *n* reals drawn uniformly from (0, 1]
- -- *uni8*: *n* reals drawn uniformly from (0, .8]
- -- *file*: n file sizes (scaled to 0..1).
- -- *dict*: *n* dictionary word sizes (in 0..1).

Run First Fit on these inputs, analyze results....

What to Measure?

What *performance indicator* to use for assessing heuristic solution quality?

The obvious choice: Number of Bins

Other performance indicators suggested by data analysis:

- Graphical analysis (GA)
- Exploratory data analysis (EDA)
- Variance reduction techniques (VRT)
- Biased estimators

First Fit

input type	n	Bins
unil	30,000	15,270
uni l	60,000	30,446
uni l	120,000	60,809
uni8	30,000	12,217
uni8	60,000	24,385
uni8	120,000	48,965
file	30,000	9
file	60,000	13
file	124,016	27
dicto	60,687	23,727
dicto	61,406	22,448
dicto	81,520	28,767

Tabular data: Good for comparisons.

Which is better? How much better? When is it better?

Graphical Analysis

Identify trends

Find common scales

Discover anomalies

Build models/explanations

GA: Look for trends.

GA (pairs plot): Look for correlations

GA (Weight Sum vs Bins): Find a common scale

Conjectured input properties affecting FF packing quality: symmetry, discreteness, skew.

GA (distribution of weights in input): look for explanations

Graphical Analysis: some results...

File data: FF packings are optimal! Due to extreme skew in the weight distribution (few big weights, many tiny weights).

Dicto data: Sorting the weights (FFD) makes the packing worse! Due to discrete weights in bad combinations. (Bad FFD packings can be predicted to within 100 bins.)

Uniform data: Smaller weight distributions (0.8) give worse packings (compared to optimal) than larger weight distributions (0, 1). <u>Probably due to asymmetry</u>.

GA (details): u vs distribution of es in bins

Graphical Analysis: What to Measure

Input:

Number of weights Sum of weights Number of weights > 0.5 Weight distribution

Output:

Number of bins Empty space = Bins - Weight Sum Gaps = Empty space per bin Distribution of gaps Animations of packings

Exploratory Data Analysis

Smooth and the rough: look at general trends, and (equally important) deviation from trends.

Categories of data: tune analysis for type of data -- counts and amounts, proportions, counted fractions, percentages ...

Data transformation: adjust data properties using logarithms, powers, square roots, ratios ...

No *a priori* hypotheses, no models, no estimators.

Number of bins is nearly equal to weight sum.

Deviation of bins from weight *sum* < 8% of bins, depending on input class. (Focus on 8 and 1 ...)

... and the rough: Weight Sum vs Bins/Weight Sum

Focus on Uniform Weight Lists

Given n weights drawn uniformly from (0, u], for 0 < u <= 1.

Consider FF packing quality as f(u), for fixed n.

EDA (the smooth): u vs Bins, at n=100,000

EDA (the Rough): u vs Bins/Weight Sum (~ nu/2).

EDA: Categories of Data

Bin efficiency = Bins/Weight Sum

Always > 1, mean is in [1.0,1.7], variance large but decreasing in n. Does it converge to 1 (optimal) or to 1+c?

a ratio

Empty space = Bins - Weight Sum

Always >= 0, mean is linear or sublinear in nu, variance constant in n.) Is it linear or sublinear in n?

Packing efficiency: n vs Bins/(un/2).

Empty Space: (Bins - Weight)/nu

EDA (data transformation): Linear growth on a log-log scale.

EDA: Some Results

Number of Bins is near Weight Sum ~ nu/2, with largest deviations near u =.8.

Empty space (a difference) has clearer convergence properties than Bin Efficiency (a ratio).

Empty space appears to be asymptotically linear in n -- non-optimal -- for all u except 1.

Variance Reduction Techniques

Is y asymptotically positive or negative?

VRT: Control Variates

Subtract a source of noise if its expectation is known and it is positively correlated with outcome.

Expected number of bins: β

Bins = Weight Sum + Empty Space E[WS - nu/2] = 0 $E[B - (WS - nu/2)] = \beta$ Var[B - (WS - nu/2)] = Var[B] + Var[(WS - nu/2)] - 2Cov[B, (WS - nu/2)].

B - WS + nu/2 = ES + nu/2.

Weight Sum is a Control Variate for Bins. ES + nu/2 is a better estimator of β .

Estimating β with B.

Estimating β with ES

More Variance Reduction Techniques

Common Random Variates: *Compare heuristics on identical inputs when performance is correlated.*

Antithetic Variates: *Exploit negative correlation in inputs*.

Stratification: *Adjust variations in output according to known variations in input.*

Conditional Monte Carlo: *More data per experiment, using efficient tests.*

Biased Estimators

Bad estimator of mean(y) vs good estimator of z=lb(y).

Biased Estimators

Bad estimator of mean(y) vs cheap estimator of z=lb(y).

Biased Estimators of Optimal Packing Quality

Bounds on optimal number of bins:

U: FF number of bins used (or any heuristic)

L: Weight sum

L: Number items >= 0.5

L: FF/2

L: (FF -2)10/17

L: (FFD - 4)9/11

Summary: What to Measure

GA: trends GA: scale GA: *details* **EDA:** smooth and rough EDA: data categories **EDA:** data transformation **VRT:** *alternatives with same* mean, lower variance **BE:** *lower/upper bounds on* the interesting quantity

First Fit Packings: number of bins number of weights sum of weights distribution of weights *number of weights > .5* packing efficiency empty space empty space per bin bounds on bin counts

Another Example Problem

TSP: Given graph G with n vertices and m weighted edges, find the least-cost tour through all vertices. 10 20 12 9 12 6 4

Applications: well known.

TSP: What to Measure

VRT's and BE's:

Mean edge weight is a control variate for Tour Length.

Beginning Tour is a control variate for Final Tour, in iterative algorithms with random starts.

f(MST + Matching) is a biased estimator of Tour Length (lower bound).

Held-Karp Lower Bound is biased estimator of Tour Length.

Can you think of others?

TSP: Graphical Analysis

Input: Vertices n and Edges m ... can you think of others?

Output: *Tour Length ... can you think of others?*

TSP: Exploratory Data Analysis

Any ideas?

Smooth&Rough **Categories** Transformation

References

Tukey, Exploratory Data Analysis.

Cleveland, Visualising Data.

Chambers, Cleveland, Kleiner, Tukey, *Graphical Methods for Data Analysis*.

Bratley, Fox, Schrage, A Guide to Simulation.

C. C. McGeoch, "Variance Reduction Techniques and Simulation Speedups," *Computing Surveys, June 1992*.

Upcoming Events in Experimental Algorithmics

January 2007: ALENEX (Workshop on Algorithm Engineering and Experimentation), New Orleans.

Spring 2007: DIMACS/NISS joint workshop on experimental analysis of algorithms, North Carolina. (Center for Discrete Mathematics and Theoretical Computer Science, and National Institute for Statistical Sciences.)

June 2007: WEA (Workshop on Experimental Algorithmics), Rome.

(Ongoing): DIMACS Challenge on Shortest Paths Algorithms.