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1. Background

e Optimiser quality is intimately related to

— the quality of the solutions produced
— the time taken to produce them
— the difficulty of the problem considered

e Problem difficulty depends on problem size and/or configuration (hard

to quantify)

e For stochastic optimisers, both run time and solution quality are random,

and are associated with some probability distribution

e An optimisation run samples from the corresponding distributions, much

like an estimator (\ Q I



1. Background

e Performance criteria (for estimators and optimisers):

Location Typically, how close to the true/theoretical value?
Spread Typical variability, best and worst-case behaviour

Tractability Can this behaviour be modelled?
e Current practice. . .

— Solution quality and run time usually studied independently from

each other, other factors kept fixed

— Emphasis on one-off and typical behaviour (especially location),

tractability not always a concern



1.1. Runtime (Hoos and Stitzle, 1998)
1.1.1. Experimental setup

e Execute algorithm n times on a given problem until a valid solution is

found or cutoff time tyay is reached

e Record number of successful runs, k, and the corresponding run time of

each one, tj, i=1,... .k

1.1.2. Data analysis (univariate)

e Empirical distribution function, sample statistics

e Estimate mean run time from experimental data, accounting for unsuc-

cessful runs:
n—
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1.2. Solution quality — Single objective
1.2.1. Experimental setup

e Execute algorithm n times on a given problem until a given stopping

criterion is met (maximum runtime, convergence, etc.)

e Record best objective value found in each run, x;, fori=1,....n

1.2.2. Data analysis (univariate)

e Empirical distribution function, sample statistics
e Normality can seldom be assumed

e Hypothesis tests (applies to run time, too)

(- Q|
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1.3. Solution quality — Multiple objectives
1.3.1. Experimental setup

e Execute algorithm n times on a given problem until a given stopping

criterion is met (maximum runtime, convergence, etc.)

e Record all non-dominated objective vectors found in each run,

{Xli,XZi,...,Xmi}, for i = 1,....,n

1.3.2. Data analysis

e Each {xyj,Xz,...,Xni} is a set of non-dominated points in objective space
e These non-dominated point (NDP) sets are random

e How can their stochastic behaviour be described? (\ Q I
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1.3. Solution quality — Multiple objectives

1.3.3. Example

1.4. Quality indicators

e Transform NDP sets into real values or real vectors
e More conventional statistical analysis

e Lose some information in the process (how much?)

(- Q|
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2. The attainment function approach

(Grunert da Fonsecaet al, 2001)

e Considers the region attained by each non-dominated point set
e Studies the set distributions directly through their moments

e Higher-order moments provide additional information

A
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2. The attainment function approach
Definition 1 (Random non-dominated point set)

X={X,.... Xm €RY: P(X <X{)=0, i#]j},
Definition 2 (Attained set)

Y={yeR! | X <y V X<y V..V Xu<y}
—{yeR!| xdy}

e The distributions of random sets X and 9 are equivalent

Definition 3 (Attainment indicator)
be(2) = 1{X <2}

e The binary random field {bx(2),z< RY} provides yet — < |
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another way to look at the distribution of X



2.1. First-order attainment function
Definition 4 (Attainment function)
ax(z) =P(bx(2) = 1)
e Probability of attaining a given goal z
e First-order moment measure of the binary random field {by(z),zc R%}
e Describes the location of the Pareto-set approximations
e Reduces to the multivariate distribution function when M =1
e Can be estimated from experimental data

Definition 5 (Empirical attainment function (EAF))
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2.1. First-order attainment function

2.1.1. EAF example
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2.1. First-order attainment function

2.1.2. Another EAF example
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3. Second-order moment measures
(Fonseceaet al, 2005)

3.1. Second-order attainment function

Definition 6 (Second-order attainment function)

aP(z1,2) = P<bx(zl) —1 A by(z) = 1)
e Probability of attaining two goals simultaneously

e Second, non-centred, moment of {bx(2),z<c RY}

e Can be estimated from experimental data

Definition 7 (Second-order empirical attainment function)

n

uﬁz)(zl,Zz):%'.Zbi(zl)'bi@) (" Q|
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3.1.1. Second-order EAF visualization

With a fixed goal z* € R?
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3.1.1. Second-order EAF visualization

With a different fixed goal z* € R?
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3.2. Covariance function

Definition 8 (Covariance function)

covx(z1,22) = 0'P (21, 22) — Ox(z1) - O x (22)
e Second, centred, moment of {by(z),zc RY}

e Indicates how likely two different goals are to be attained together in
the same run in comparison to being attained independently in different

runs

e Can be estimated from experimental data

Definition 9 (Empirical covariance function (ECF))

COVn(21,20) = 02 (71, 2) — On(21) - An(22) ( < |



3.2.1. Empirical covariance function visualization

Covariance function values greater than 0.21
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3.3. Empirical covariance function visualization

Covariance function values less than —0.21
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4. Comparing optimiser performance

Performance may be compared through EAF-based hypothesis tests

4.1. First-order attainment function comparison

Ho : 0x(2)=0x(2)  forall ze R
VS.
Hi @ ax,(2) # ax(2) for at least one ze R,
e Reject if the test statistic Dnm = SUP,.ga|04(2) — 0B(2)| is large
e Permutation argument allows critical values to be obtained
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4.2. Second-order attainment function comparison

Ho . Gg(z)

A

(z1,2) =0P(z1,2)  for all 1,2 € R

VS.

Hi : O(gé\)(zl,zz) + O(g(zB)(Zl,zz) for at least one pair (z1,2) € RY x RY,

e Reject if

D2 = sup |0;?(z,2) —af? (z,2)|
71,20€R4

exceeds the (1— a)-quantile of the permutation distribution of the test

statistic under Hg

e One-sided tests could be formulated in a similar way

(- Q|
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5. EXxperimental results

e First example based on a multiobjective LQG controller design problem,

under complexity constraints

— MOGA-A (no niching) vs. MOGA-B (sharing and mating restriction)

— Two sets of 21 runs for 100 generations

e Second example based on a multiobjective TSP instance
— PLS-A (2-opt neighbourhood) vs. PLS-B (2H-opt)
— Two sets of 25 runs until archive contained only local optima

e 10000 permutations used to estimate critical values
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5.1. Pareto-set approximation statistics

No. of elements
Optimiser | No. of runs | min | average | max
MOGA-A 21 48 | 120.38 | 191
MOGA-B 21 87 | 170.95 | 259
PLS-A 25 1973 | 2386.1 | 2891
PLS-B 25 2052 | 2541.5 | 3032
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5.2. First-example

5.2.1. Empirical covariance function

Covariance function values less than —0.21
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5.2. First-example

5.2.1. Empirical covariance function

Covariance function values less than —0.21
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5.2. First-example
5.2.1. Empirical covariance function

Covariance function values greater than 0.21
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5.2. First-example
5.2.1. Empirical covariance function

Covariance function values greater than 0.21
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5.2. First-example

5.2.2. Second-order EAF test ( = .05)

1

10

yrms

EEEEEEEEEEEEEEEEEEEEEEEEEEEE



5.3. Second example

5.3.1. EAF contour plots
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5.3. Second example

5.3.2. Hypothesis test results@ = .05)
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5.4. Result summary

No. of elements
Optimiser | No. of runs | min | average | max
MOGA-A 21 48 120.38 | 191
MOGA-B 21 87 | 170.95 | 259
PLS-A 25 1973 | 2386.1 | 2891
PLS-B 25 2052 | 2541.5 | 3032
Hypothesis test results (a = .05)

Optimiser | Hypothesis test | Test statistic | Critical value | p-value decision
MOGA 1st-order EAF 0.571 0.571 0.091 | do not reject Hp
MOGA | 2nd-order EAF 0.762 0.714 0.016 reject Ho

PLS 1st-order EAF 0.680 0.560 0.004 reject Ho
PLS 2nd-order EAF 0.840 0.720 0.002 reject Ho

(- Q|
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6. Quality indicators revisited

e Quality indicators transform NDP sets into real values

e If the multiobjective optimiser is stochastic, both outcome NDP sets

and quality indicator values will be random

e The quality indicator distribution depends only on the underlying random

NDP set distribution

e It must be possible to describe it as a function of an attainment function

of sufficiently high order

e Results should be both of theoretical and of practical value



6.1. Example: The unary e-indicator

e May be written as (Z is the reference set)
lez(X) = inf{eeR": X Je-z VzeZ}
= infeee R [bx(e-2)=1
{ 1l
e Has distribution function
Pllez(X) <c] = aﬂ?(c-zl,c-zz,...,c-zk)

given a reference set Z={2,2,...,%}

e In particular, when Z = {z},

Pllez(X) <c| =ax(c-2)
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/. Modelling performance

7.1. Runtime (Hoos and Stitzle, 1998)

e Run-time distributions may be related to the exponential distribution
e Doing so may help decide, e.g., when an algorithm should be restarted

e Other survival-time distributions (e.g., Weibull)

7.2. Solution quality (HUussler et al., 2003)

e Solution-quality distributions may be related to the Weibull extreme

value distribution, at least in certain ideal cases

e The parameters of the Weibull distribution generally depend on the
function being optimised, and may give information about, (\ Q I

e.g., whether the optimum is likely to be close or far away oo



8. An integrated view of performance

e The best-so-far trace of a single-objective optimisation run represents

an observed run-time/solution-quality tradeoff

e In general, the observed performance in an n-objective optimisation run
can be described through an augmented, n+ 1-objective NDP set, in-

cluding the run-time dimension

e The distribution of such NDP sets may be studied through empirical

attainment functions

e [he Weibull distribution is both an extreme value distribution and a
distribution used in survival analysis, and has been shown to be useful

in modelling both run-time and solution-quality behaviour of optimisers

e Parametric models of attainment functions, valid under (\ Q I
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9. Concluding remarks

e Optimiser performance involves many criteria

e Many of the questions faced when addressing optimiser performance are

similar to those addressed at the optimisation stage
e Other relevant questions pertain to experimental methodology

e First-order attainment function describes the distribution of random

NDP sets in terms of location

e Covariance function provides insight into the dependencies within the

NDP sets

e Second-order attainment function favours multiple good

solutions (\ Q I
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9. Concluding remarks

e Hypothesis tests enable comparison of optimisers
e Multiple comparisons still need to be addressed

e [he attainment-function methodology is fully usable with two objectives

(computational developments still needed for more dimensions)
e Provides a theoretical basis for analysing other quality indicators
e Supports combined time-quality performance evaluation
e Scalability of optimisers is also a performance-related question
e Did you say “sadistics”?

(- Q|
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