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PROBLEM 1 Relaxation, the simplex method and the dual prob-

lem (20 %)

Consider the following integer programming problem (IP):

maximize 3x1 − x2 + 2x3

subject to x1 − x2 + x3 ≤ 5
2x2 + x3 ≤ 4

x1 ≤ 3
x1, x2, x3 ≥ 0, x1, x2, x3 ∈ Z

Question a:

Write the LP relaxation (P1) of (IP) and explain why the objective value of an optimal
solution to (P1) is an upper bound on the value of an optimal solution to (IP).

Answer a:

The LP relaxation is obtained by dropping the integrality constraint:

maximize 3x1 − x2 + 2x3

subject to x1 − x2 + x3 ≤ 5
2x2 + x3 ≤ 4

x1 ≤ 3
x1, x2, x3 ≥ 0
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As this increases the region of feasible solutions and we are dealing with a maximization
problem, the value of an optimal solution to (P1) is an upper bound on the value of an
optimal solution to (IP).

Question b:

Convert the problem (P1) to equational form by adding slack variables x4, x5, x6 corre-
sponding to the three in-equalities in the order from top to bottom. Next write the first
simplex tableau with x4, x5, x6 as the basic solution.

Answer b:

maximize 3x1 − x2 + 2x3

subject to x1 − x2 + x3 + x4 = 5
2x2 + x3 + x5 = 4

x1 + x6 = 3
x1, x2, x3, x4, x5, x6 ≥ 0

The first simplex tableau with x4, x5, x6 as basic solution is given by

x4 = 5− x1 + x2 − x3

x5 = 4− 2x2 − x3

x6 = 3− x1

z = 0 + 3x1 − x2 + 2x3

Question c:

Explain how x1 may be brought into the basic solution and why this will increase the
current objective value. Perform a pivot step that brings x1 into the basis and explain how
you select the variable to leave the basis in that step.

Answer c:

The variable x1 has a positive coefficient in the last row. Hence increasing x1 will increase
the objective function. The maximum increase in x1 is limited by the fact that all variables
must remain non-negative. Hence it is the equation x6 = 3− x1 that limits the growth of
x1 the most. We perform a pivot step for that row and get the following simplex tableau:
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x1 = 3− x6

x4 = 2 + x2 − x3 + x6

x5 = 4− 2x2 − x3

z = 9− x2 + 2x3 − 3x6

Question d:

After two more pivot steps (you do not have to perform these!) we obtain the following
simplex tableau:

x1 = 3− x6

x2 = 2

3
+ 1

3
x4 −

1

3
x5 −

1

3
x6

x3 = 8

3
− 2

3
x4 −

1

3
x5 +

2

3
x6

z = 132

3
− 5

3
x4 −

1

3
x5 −

4

3
x6

Argue that we have found an optimal solution to (P1). State the solution and its objective
value.

Answer d:

All variables with a non-zero coefficient in the equation for z have a negative coefficient.
This means that we cannot increase z by increasing any variable and as shown in the course
this is equivalent to the fact that the current solution is optimal. The solution can be read
out of the simplex tableau and it is

x1 = 3, x2 =
2

3
, x3 =

8

3

The objective value is z = 132

3
.

Question e:

Write up the dual problem (DP1) of (P1) where you use dual variables y1, y2, y3 corre-
sponding to the three in-equalities in (P1) from top to bottom.

Answer e:

The Dual problem is
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minimize 5y1 + 4y2 + 3y3
subject to y1 + y3 ≥ 3

2y2 − y1 ≥ −1
y1 + y2 ≥ 2

y1, y2, y3 ≥ 0

Question f:

Show that (y1, y2, y3) = (5
3
, 1

3
, 4

3
) is an optimal solution to (DP1).

Answer f:

The vector (y1, y2, y3) = (5
3
, 1

3
, 4

3
) satisfies all three in-equalities (with equality) and has

objective value 5 · 5

3
+ 4 · 1

3
+ 3 · 4

3
= 132

3
. This value is equal to the objective value of the

primal solution that was found in (d) and hence is optimal by the weak duality theorem.

Question g:

As indicated in Question d, the optimal solution to (P1) is not an integer solution and
hence not a solution to (IP). Use the last simplex tableau to derive the following Gomory
cut (these cuts were introduced on weekly note 3):

2

3
x4 +

1

3
x5 +

1

3
x6 ≥

2

3
(1)

Give a short explanation why this is a valid in-equality for (IP) (when we think of the
slack variables being integer variables added to the original formulation), while adding (1)
to (P1) will make the current optimal LP solution infeasible.

Answer g:

Rewriting the equation for x2 in the last simplex tableau we get

x2 −
1

3
x4 +

1

3
x5 +

1

3
x6 =

2

3
(2)

It was shown in one of the exercises on Weekly note 3 that this implies that the following
in-equality (which is obtained by replacing each coefficient by the nearest smaller integer)
is valid for all integer solutions to the problem (IP)

x2 − x4 ≤ 0 (3)

Now subtracting (3) from (2) we obtain (1).
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PROBLEM 2 Flows(20 %)

At the annual party at a well-known academic institution on Fyn not all went smoothly
and some participants had to be taken to medical emergency treatment at Odense Univer-
sity Hospital. In total 150 had to get a transfusion of one bag of blood. The hospital had
155 bags in stock. The distribution of blood groups in the supply and amongst the par-
ticipants in need on blood is shown in the table below (the last part is writtem as demand).

Blood type A B 0 AB
Bags in stock 44 31 42 38
Demand 37 33 40 40

• Type A patients can only receive blood of type A or type 0.

• Type B patients can receive only type B or type 0.

• Type 0 patients can receive only type 0.

• Type AB patients can receive any of the four types.

s

A

B

0

AB

A

B

0

AB

t

donators recipients

44

31

42

38

37

33

40

40

Figure 1: The proposed flow network N for the blood distribution problem. All capacities
on the arcs in the middle are infinite.
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Question a:

Consider the flow network N in Figure 1. Show that one can use this network to model
the problem of checking whether it is possible to give all participants a blood transfusion
that is compatible with the restrictions above. In particular, you should

• Explain the meaning of the arcs in the middle (what do they model?).

• Say what flow value (bx(s)) you are looking for and how to interpret an (s, t)-flow of
that value as a proper assignment of blood bags.

• You should also give an argument that we may replace all infinite capacities by finite
numbers and say which (smallest) numbers will work.

Answer a:

• The capacities of the arcs from s indicate how much blood we have in stock of each
type and the capacities on the arcs into t show the demand for each of the four types
of recipients.

• The arcs in the middle model exactly which types of blood can be given to a patient
with a given blood type.

• We want the flow to model the assignment of blood bags to participants so we are
looking for an integer flow of value 150. The flow on an arc α → β in the middle will
then tell us how many bags of type α we will use to satisfy (a part of) the demand
for participants with blood type β.

• We can replace the infinite capacities on arcs α → β by the capacity of the arc from
β to t (which equals the demand for that type).

Question b:

Show how to find a maximum (s, t)-flow in N by the augmenting path method (Ford-
Fulkerson or shortest augmenting paths). You may start by listing four easy to find (s, t)-
paths and send flow along these. After this you should show the resulting flow x and the
residual network N (x) and show how to continue from there.

Answer b:

We start by sending flow along the following 4 paths which are disjoint apart from s, t:

• sAAt 37 units

• sBBt 31 units
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• s00t 40 units

• sABABt 38 units

This gives us a flow of value 146. The residual network now looks as follows (infinite
capacities not explicitly written)

s

A

B

0

AB

A

B

0

AB

t

donators recipients

31

38

37

40

2

31

2

38

7

37

2

40

38

40

31

37

Now we identify the following augmenting paths which again share only s, t: s0Bt

capacity 2 and sAABt capacity 2. Augmenting along both of these gives us a maximum
flow of values 150 (all arcs into t are filled).

Question c:

Show a feasible assignment of blood bags that is found via your flow algorithm above and
say how you obtained it from your maximum (s, t)-flow.
.

Answer c:

The feasible assignment that can be read off from the final flow values are

• A → A: 37 bags, A → AB: 2 bags

• B → B: 31 bags

• 0 → 0: 40 bags, 0 → B: 2 bags

• AB → AB: 38 bags.

7



Question d:

Suppose now that five more participants show up also in need of a blood transfusion (so
now all blood bags of the hospital would be needed if there is a solution). Use the network
representation to analyse what their blood types must be in order for a feasible solution
to exist.

Answer d:

Looking at the network model in Figure 1 we can see that participants who need blood
of types B or 0 can only get this from blood types B or 0, so there is no room for extra
demand here as we have 73=31+42 bags and currently need 33+40 = 73 bags. On the
other hand participants with types A and AB can be supplied by blood type A of which
we still have 5 bags in stock so we can handle the extra participants if and only if their
blood types are all in the set {A,AB}.
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PROBLEM 3 Project scheduling (15 %)

A small project has 6 sub-activities A,B,C,D,E, F whose individual dependency (shown
by the immediate predecessors) is given in Figure 2. Here we also list the normal time (in
weeks), the absolute minimum time and the cost of shortening the activity by one week.

A

B

C

D

E

F

Start End

[7,5,6] [5,5,-] [8,6,8]

[10,5,10] [3,1,8] [7,4,3]

Figure 2: An AON network for a small project with 6 activities. For each activity the
following data is given in that order from left to right: normal time, minimum time in
weeks, and the cost of shortening the duration of the activity by one week.

Question a:

Describe (in words) an algorithm for finding the duration of a given project when it is
modelled as an AON network and all activities are at the normal duration. What is the
running time of the algorithm?

Answer a:

As we have seen in the course we can calculate the duration of the whole project by
calculation the earliest finishing times EF(i) for each activity. This can be done by finding
an acyclic ordering of the project graph in linear time (via DFS) and then calculating EF(i)
via the formula EF (i) = maxj→i{EF (j) + di}

Question b:

Illustrate your algorithm on the project network in Figure 2 and state the duration of
the project found by the algorithm. It suffices to show a few steps and then write the
solution. You must also show the result of the same calculation when all activities are at
the minimum duration. Here it is enough to show the final result (you may also show both
calculations on one graph).
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Answer b:

Both results are shown in Figure 3 (the calculation is not shown).
The duration when all activities are at their normal duration is 23 weeks and it is 16

weeks if all activities are at their minimum duration.

A

B

C

D

E

F

Start End

[7,5,6] [5,5,-] [8,6,8]

[10,5,10] [3,1,8] [7,4,3]

(7,5)
(15,10)

(23,16)

(10,5) (13,6) (22,14)

(23,16)(0,0)

Figure 3:

Question c:

The goal is now to shorten the duration of the project to 19 weeks. This means that the
duration of one or more activities has to be shortened. Of course we want to select these
so that the total cost of shortening the duration to 19 weeks is minimized. Formulate this
problem a linear programming problem and argue that the optimal solution to this LP will
provide the correct answer. Note that you must use the actual data in the LP formulation!

Answer c:

We will use a variable xi to indicate how much we will shorten activity i and another set
of variables yi which will indicate the earliest starting time of activity i. For each arc
i → j in the project network we will add the constraint yj ≥ yi + (di − xi). We also
use a variable yend to express that the dummy activity “end” cannot start before all its
immediate predecessors have finished. Finally we add the constraint yend ≤ 19 to force the
total project time to be lowered to 19.
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minimize 6xA + 10xB + 8xD + 8xE + 3XF

subject to yC ≥ yA + (7− xA)
yC ≥ yB + (10− xB)
yD ≥ yA + (7− xA)
yD ≥ yB + (10− xB)
yE ≥ yC + 5
yE ≥ yD + (3− xD)
yF ≥ yC + 5
yF ≥ yD + (3− xD)

yend ≥ yE + (8− xE)
yend ≥ yF + (7− xF )
yend ≤ 19
xA ≤ 2
xB ≤ 5
xD ≤ 2
xE ≤ 2
xF ≤ 3

xA − xF ≥ 0, yA, yB, yC, yD, yE, yF , yend ≥ 0

The optimal solution to this LP will tell us to shorten activity i by xi ≥ 0 units and
since the cost we apply to each xi is the per unit shortening cost of that activity, the cost
of the solution will be that of shortening the project in the way suggested by the xi’s.
Conversely, any feasible shortening of projects corresponds to a solution to this LP whose
cost (in the LP) is the actual cost of shortening the activities in the way suggested.
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PROBLEM 4 Branch and Bound (15 %)

Question a:

Consider the following knapsack problem:

max 50x1 + 60x2 + 140x3 + 40x4

such that 5x1 + 10x2 + 20x3 + 20x4 ≤ 30

x1, x2, x3, x4 ∈ {0, 1}

State the LP-relaxation and show how to find an optimal solution to this without using
the simplex method. Hint: a greedy approach works.

Answer a:

We obtain the LP relaxation by replacing the integrality constraints on the xi’s by 0 ≤
xi ≤ 1, i = 1, 2, 3, 4. It is well-known that this (so-called) fractional knapsack problem can
be solved to optimality by the greedy algorithm. First order the items in decreasing order
according to the values of ri =

vi
wi

, where vi is the value and wi the weight/size of item i.

In our case (r1, r2, r3, r4) = (50
5
, 60

10
, 140

20
, 40

20
) = (10, 6, 7, 2) so this gives r1 > r3 > r2 > r4.

Now consider the items in the order given by the ordering above and take the maximum
amount possible of the current item. This will give the optimum solution since we pack
at maximum relative value per unit. The solution found in this way is x1 = x3 = 1 and
x2 =

1

2
with value 220.

Question b:

Solve the knapsack problem above to optimality using branch and bound. Use the depth
first search strategy when exploring the nodes of the B&B tree and when you branch, you
should first explore the branch corresponding to including the item that you are branching
on. Show the B&B tree in each step and explain briefly (with justification) what you
conclude in each step of the algorithm. This includes which nodes in the B&B tree you
must continue exploring and which nodes you can finish (and with what conclusion).

Answer b:

We use the value of the fractional knapsack problem as the upper bound function.
First we solve this as above to get the upper bound 220 for the maximum objective

value. Since x2 is not an integer we branch on x2 and get two branches, one where we set
x2 = 1 and one where x2 = 0.
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As suggested we first treat the x2 = 1 branch. The remaining capacity is 20 so the
optimal solution to the resulting fractional knapsack problem

max 50x1 + 60x2 + 140x3 + 40x4

such that 5x1 + 10x2 + 20x3 + 20x4 ≤ 20

0 ≤ x1, x2, x3, x4 ≤ 1

is x1 = 1 and x3 =
3

4
with objective value 215. As x3 is fractional we branch on that and

first consider the branch x3 = 1 (and x2 = 1). This problem is trivial to handle since the
knapsack is full when we take items 2 and 3 and the value of the integer solution is 200.
Now we have a feasible solution which we can use in the bounding process from now on.
Now consider the x3 = 0 branch (that is we currently have x2 = 1 and x3 = 0). Here
the optimal solution to the LP relaxation is x1 = 1 and x4 =

3

4
with value 140. Since 140

is less than 200, the value our known feasible solution we do not continue branching but
backtrack instead, hence completing the x2 = 1 branch.

Now consider the branch for x2 = 0. The LP optimum is now x1 = x3 = 1 and x4 =
1

4

with value 200. This is no better than the value of of known integer solution so we stop
that branch and hence the whole search.

The optimum solution is hence x2 = x3 = 1 with value 200.
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PROBLEM 5 Formulation of IP problems and the cutting plane
method (20 %)

Let G = (V,E) be a connected graph on n vertices V = {1, 2, . . . , n} and non-negative
weights we on its edges. The fact that we can solve the minimum spanning tree problem
in polynomial time is ignored in this problem.

Question a:

Explain why the following is a correct integer programming formulation of the minimum
spanning tree problem and state the LP-relaxation:

Minimize
∑

e∈E wexe (4)

such that
∑

e∈E xe = n− 1 (5)
∑

{e:|e∩S|=1} xe ≥ 1 ∀ ∅ 6= S ⊆ V − {1} (6)

xe ∈ {0, 1} (7)

For later reference we call this formulation MSTIP and its LP-relaxation MSTLP.

Answer a:

The conditions (5), (6) and (7) imply that the edges with xe = 1 form a spanning tree and
since we minimize the cost of these edges, the claim follows. The LP relaxation is obtained
by replacing (7) by 0 ≤ xe ≤ 1 ∀e ∈ E.

The conditions (6) are not nice to work with, since there are exponentially many of
those, so even MSTLP may be impossible to solve when n gets large.

Consider the following integer programming problem MST-NO-CUTS:

Minimize
∑

e∈E wexe (8)

such that
∑

e∈E xe = n− 1 (9)

xe ∈ {0, 1} (10)

Question b:

Explain how to solve the LP-relaxation of MST-NO-CUTS. Why does this linear program-
ming problem always have an optimal integer solution x∗?
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Answer b:

First observe that if e, e′ are two edges such that we < we′ then we must have xe ≥ xe′ in
any optimal solution to the LP relaxation of MST-NO-CUTS, since otherwise we could get
a cheaper solution be lowering xe′ and increasing xe. Secondly, if e, e′ are two edges such
that we = we′, then we can make a solution of the same cost by lowering xe′ and increasing
xe (if that is possible). These two observations imply that it is optimal to select the n− 1
edges of lowest cost: If there are more than n − 1 edges with x∗

e > 0 then we could get
a new optimal solution by increasing the value on the cheapest edge that currently has
0 < x∗ < 1.

Question c:

What can you say about the objective value of the optimum solution x∗ to MST-NO-CUTS
compared to the optimal solution to MSTIP (the minimum spanning tree solution)?

Answer c:

The objective value of x∗ is a lower bound for the optimum objective value for MSTIP
because MST-NO-CUTS contains only part of the constraints of MSTIP (we have dropped
(6))

Question d:

How do you check (algorithmically and in polynomial time!) whether x∗ above is also a
feasible solution to MSTIP? What can you conclude if it is a feasible solution to MSTIP?

Answer d:

Since x∗ is integer valued, all we have to check is that the graph G consisting of those
edges with x∗

e = 1 is connected, since then it will be a spanning tree. This can be done by
applying DFS to G from an arbitrary vertex, say vertex 1.

Question e:

Suppose now that x∗ is a not feasible solution to MSTLP, that is, the condition (6) is vio-
lated for some X . Explain how to find at least one cut (X, V −X) with ∅ 6= X ⊆ V −{1}
such that adding the condition

∑
{e:|e∩X|=1} xe ≥ 1 to the LP relaxation of the MST-NO-

CUTS formulation makes x∗ infeasible for this extended problem.
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Answer e:

As we saw above in the answer to d: x∗ is feasible for MSTIP if and only if x∗ is the
incidence vector of a spanning tree. If this is not the case, then the DFS that we apply
above will not reach all vertices but only a proper subset X of the vertices. Now we can
add the condition

∑
{e:|e∩X|=1} xe ≥ 1 and make x∗ infeasible.

Suppose that we have iterated this process a number of times and that y∗ is an optimum
solution to the current LP problem (obtained from the LP-relaxation of MST-NO-CUTS
by adding the violated cuts found so far).

Question f:

Explain briefly how to use a maximum flow algorithm (as a subroutine) to check whether
y∗ satisfies (6).

Answer f:

Define a flow network N = (V,A, ℓ ≡ 0, u) where V = {1, 2, . . . , n} and A = {ij|y∗e >

0 and e has ends i, j}. We also take uij = y∗e for each such arc (and its opposite). Now
the condition (6) holds if and only if there is no cut in N of capacity less that 1. By the
max flow min cut theorem, this can be checked via n− 1 maxflow calculations by checking
whether N has a (1, i)-flow of value at least 1 for all i ∈ {2, 3, . . . , n}.
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PROBLEM 6 Maximum weight matchings in bipartite graphs (10
%)

Consider the maximum weight matching problem in a bipartite graph G = (V,E) with a
non-negative weight function w on the edges, as described on page 33 in MG:

Maximize
∑

e∈E wexe (11)

such that
∑

{e∈E:v∈e} xe = 1 ∀v ∈ V

xe ∈ {0, 1} ∀e ∈ E

Suppose that we are given an optimal solution x∗ to the LP-relaxation of (11) for a
bipartite graph G on 6 vertices such that for some 6-cycle abcdefa of G x∗ has the values
x∗
ab = x∗

cd = x∗
ef = 1

3
and x∗

bc = x∗
de = x∗

af = 2

3
(see Figure 4).

a b

c d

e f

1/3

2/3

1/3

2/3

1/3

2/3

Figure 4:

Question a:

Prove (without knowing what the cost of the edges are!) that the edges af, de, bc form a
maximum weight matching in G. Hint: Consider the proof of Theorem 3.2.1 in MG.

Question b:

Can you give a different maximum weight matching?

Answer to a and b:

Let x∗ be as given in the figure and the the unknown costs be cab, caf , cbc, ccd, cef , cde. Let
z∗ be the cost of x∗. If we lower the values of x∗ by some ǫ ≤ 1

3
on the edges ab, cd, ef

and increase it by ǫ on the edges af, de, bc then we obtain a new feasible solution of cost
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z1 = z∗+ǫ[(caf+cbc+cde)−(cab+ccd+cef )]. On the other hand if we lower the values of x∗ by
the same ǫ on the edges af, de, bc and increase by ǫ on the edges ab, cd, ef , then we get a new
feasible solution of cost z2 = z∗+ǫ[(cab+ccd+cef)−(caf+cbc+cde)]. As x

∗ is optimal and has
weight z∗ both z1 ≤ z∗ and z2 ≤ z∗ holds implying that [(cab+ccd+cef)−(caf+cbc+cde)] = 0
and both of our new solutions are optimal.

Thus taking ǫ = 1

3
we get from the optimality of z1 that xab = xcd = xef = 0 and

xbc = xde = xaf = 1 is an optimal integer valued solution to the LP relaxation and hence
corresponds to the maximum weight matching bc, de, af in G.

Similarly the optimality of z2 and ǫ = 1

3
implies that ab, cd, ef is also a maximum weight

matching of G.
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