DM811 - Heuristics for Combinatorial Optimization

Laboratory Assignment 3, Fall 2008

Prepare at least two of the exercises below to discuss in class. You may work in group, if you prefer.

Exercise 1

Definition. BIN PACKING PROBLEM

Input: A finite set U of items, a size $s(u) \in Z^+$ for each $u \in U$, and a positive integer bin capacity B.

Task: Find the minimal number of bins K for which there exits a partition of U into disjoint sets U_1, U_2, \ldots, U_k and the sum of the sizes of the items in each U_i is B or less.

Definition. Two-dimensional bin packing

Input: A finite set U of rectangular items, each with a width $w_u \in Z^+$ and a height $h_u \in Z^+$, $u \in U$, and an unlimited number of identical rectangular bins of width $W \in Z^+$ and height $H \in Z^+$.

Task: Allocate all the items into a minimum number of bins, such that the bin widths and heights are not exceeded and the original orientation is respected (no rotation of the items is allowed).

Design a simple construction heuristic and a simple local search algorithm for the two problems.

Exercise 2

We recall the definition of the SMTWTP given in lecture

Definition. Single Machine Total Weighted Tardiness Problem

Input: A set *J* of jobs $\{1, ..., n\}$ to be processed on a single machine and for each job $j \in J$ a processing time p_j , a weight w_j and a due date d_j .

Task: Find a schedule that minimizes the total weighted tardiness $\sum_{j=1}^{n} w_j \cdot T_j$, where $T_j = \{C_j - d_j, 0\}$ (C_j completion time of job j).

Give a computational analysis for a local search with the following three neighborhoods for local search: interchange, insertion, swap. Discuss possible neighborhood pruning and show that the insert neighborhood can be evaluated in $O(n^2)$.

Exercise 3

Definition. P-MEDIAN PROBLEM

Input: A set U of locations for n users, a set F of locations for m facilities and a distance matrix $D = [d_{ij}] \in \mathbf{R}^{n \times m}$.

Task: Select a set $J \subseteq F$ of p locations where to install facilities such that the sum of the distances of each user to its closest installed facility is minimized, i.e.,

$$\min\left\{\sum_{i\in U}\min_{j\in J}d_{ij}\mid J\subseteq F \text{ and } |J|=p\right\}$$

Design a simple construction heuristic and a simple local search algorithm.

Exercise 4

Definition. QUADRATIC ASSIGNMENT PROBLEM **Input:** A set of *n* locations with a matrix $D = [d_{ij}] \in \mathbf{R}^{n \times n}$ of distances and a set of *n* units with a matrix $F = [f_{kl}] \in \mathbf{R}^{n \times n}$ of flows between them

Task: Find the assignment σ of units to locations that minimizes the sum of products between flows and distances, i.e.,

$$\min_{\sigma \in \Sigma} \sum_{i,j} f_{ij} d_{\sigma(i)\sigma(j)}$$

Define solution representation, evaluation function and neighborhood for a local search algorithm. Make a computational analysis and show that a single neighbor can be evaluated in O(n).

Exercise 5

Definition. Set Problems

Set Covering

Set Packing

Set Partitioning

Design a simple construction heuristic and a simple local search algorithm for these problems.

Exercise 6

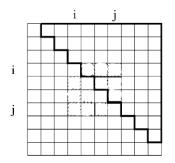
Definition. LINEAR ORDERING PROBLEM

The two following problems are equivalent. **Input:** *an* $n \times n$ *matrix C*

Task: Find a permutation π of the column and row indices $\{1, \ldots, n\}$ such that the value

$$f(\pi) = \sum_{i=1}^n \sum_{j=i+1}^n c_{\pi_i \pi_j}$$

is maximized. In other terms, find a permutation of the columns and rows of C such that the elements in the upper triangle is maximized.



Definition. FEEDBACK ARC SET PROBLEM (FASP)

Input: A directed graph D = (V, A), where $V = \{1, 2, ..., n\}$, and arc weights c_{ij} for all $[ij] \in A$

Task: Find a permutation $\pi_1, \pi_2, ..., \pi_n$ of V (that is, a linear ordering of V) such that the total costs of those arcs $[\pi_i \pi_i]$ where j > i (that is, the arcs that point backwards in the ordering)

$$f(\pi) = \sum_{i=1}^n \sum_{j=i+1}^n c_{\pi_j \pi_i}$$

is minimized.

Design a simple construction heuristic and a simple local search algorithm.

Exercise 7

At lecture we discussed the Vertex-Graph Coloring Problem in its optimization version and mentioned different solution approaches for local search. Complete the following table adding a "+" or "-" in the fourth column indicating the feasibility or infeasibility of designing a local search algorithm under the corresponding approach.

For each of the rows that you marked as possible define *candidate solutions*, *neighborhood relation* and *evaluation function*.

k	assignment	coloring	feasibility
<i>k</i> -fixed	complete	proper	
<i>k</i> -fixed	partial	proper	
<i>k</i> -fixed	complete	unproper	
<i>k</i> -fixed	partial	unproper	
<i>k</i> -variable	complete	proper	
<i>k</i> -variable	partial	proper	
<i>k</i> -variable	complete	unproper	
<i>k</i> -variable	partial	unproper	

Exercise 8

Recall the definition of the SAT problem. Indicate which auxiliary data structures can be implemented to speed up the examination of the one-flip neighborhood in a local search algorithm. Provide a computational analysis.