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Very Large Scale Neighborhoods

Small neighborhoods:
I might be short-sighted
I need many steps to traverse the search space

Large neighborhoods
I introduce large modifications to reach higher quality solutions
I allows to traverse the search space in few steps

Key idea: use very large neighborhoods that can be searched efficiently
(preferably in polynomial time) or are searched heuristically

Very large scale neighborhood search:
1. define an exponentially large neighborhood

(though, O(n3) might already be large)
2. define a polynomial time search algorithm to search the neighborhood

(= solve the neighborhood search problem, NSP)
I exactly (leads to a best improvement strategy)
I heuristically (some improving moves might be missed)
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Examples of VLSN Search [Ahuja, Ergun, Orlin, Punnen, 2002]:

I based on concatenation of simple moves
I Variable Depth Search (TSP, GP)
I Ejection Chains

I based on Dynamic Programming or Network Flows
I Dynasearch (ex. SMTWTP)
I Weighted Matching based neighborhoods (ex. TSP)
I Cyclic exchange neighborhood (ex. VRP)
I Shortest path

I based on polynomially solvable special cases of hard combinatorial
optimization problems

I Pyramidal tours
I Halin Graphs

ä ⇒ Idea: turn a special case into a neighborhood
VLSN allows to use the literature on polynomial time algorithms
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Variable Depth Search

I Key idea: Complex steps in large neighborhoods = variable-length
sequences of simple steps in small neighborhood.

I Use various feasibility restrictions on selection of simple search steps to
limit time complexity of constructing complex steps.

I Perform Iterative Improvement w.r.t. complex steps.

Variable Depth Search (VDS):
determine initial candidate solution s
t̂ := s

while s is not locally optimal do
repeat

select best feasible neighbor t
if g(t) < g(t̂) then t̂ := t

s := t̂
until construction of complex step has been completed ;
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VLSN for the Traveling Salesman Problem

I k-exchange heuristics
I 2-opt [Flood, 1956, Croes, 1958]
I 2.5-opt or 2H-opt
I Or-opt [Or, 1976]
I 3-opt [Block, 1958]
I k-opt [Lin 1965]

I complex neighborhoods
I Lin-Kernighan [Lin and Kernighan, 1965]
I Helsgaun’s Lin-Kernighan
I Dynasearch
I Ejection chains approach
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The Lin-Kernighan (LK) Algorithm for the TSP (1)

I Complex search steps correspond to sequences
of 2-exchange steps and are constructed from
sequences of Hamiltonian paths

I δ-path: Hamiltonian path p + 1 edge connecting one end of p to
interior node of p

u

a)

v

u

b)

vw
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Basic LK exchange step:
I Start with Hamiltonian path (u, . . . , v):

u

a)

v

I Obtain δ-path by adding an edge (v,w):

u

b)

vw

I Break cycle by removing edge (w, v ′):

u

c)

vv'w

I Note: Hamiltonian path can be completed
into Hamiltonian cycle by adding edge (v ′, u):

u

c)

vv'w
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Construction of complex LK steps:

1. start with current candidate solution (Hamiltonian cycle) s;
set t∗ := s;
set p := s

2. obtain δ-path p ′ by replacing one edge in p
3. consider Hamiltonian cycle t obtained from p by

(uniquely) defined edge exchange
4. if w(t) < w(t∗) then

set t∗ := t; p := p ′; go to step 2
else accept t∗ as new current candidate solution s

Note: This can be interpreted as sequence of 1-exchange steps that alternate
between δ-paths and Hamiltonian cycles.
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Additional mechanisms used by LK algorithm:

I Pruning exact rule: If a sequence of numbers has a positive sum, there is
a cyclic permutation of these numbers such that every partial sum is
positive.
è need to consider only gains whose partial sum remains positive

I Tabu restriction: Any edge that has been added cannot be removed and
any edge that has been removed cannot be added in the same LK step.
Note: This limits the number of simple steps in a complex LK step.

I Limited form of backtracking ensures that local minimum found by the
algorithm is optimal w.r.t. standard 3-exchange neighborhood

I (For further details, see original article)

[LKH Helsgaun’s implementation
http://www.akira.ruc.dk/~keld/research/LKH/ (99 pages report)]
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Elements for an efficient neighborhood search

I fast delta evaluations

I neighborhood pruning: fixed radius nearest neighborhood search

I neighborhood lists: restrict exchanges to most interesting candidates

I don’t look bits: focus perturbative search to “interesting” part

I sophisticated data structures for fast updates
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TSP data structures

Static data structures:
I priority lists
I k-d trees

Tour representation. Operations needed:
I reverse(a, b)
I succ(a)

I prec(a)

I sequence(a,b,c) – check whether b is within a and b

Possible choices (dynamic data structure):

I |V | < 1.000 arries π and π−1

I |V | < 1.000.000 two level tree
I |V | > 1.000.000 splay tree
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Ejection Chains

I Attempt to use large neighborhoods without examining them
exhaustively

I Sequences of successive steps each influenced by the precedent and
determined by myopic choices

I Limited in length

I Local optimality in the large neighborhood is not guaranteed.

Example (on TSP):
successive 2-exchanges where each exchange involves one edge of the
previous exchange

Example (on GCP):
successive 1-exchanges: a vertex v1 changes color from ϕ(v1) = c1 to c2, in
turn forcing some vertex v2 with color ϕ(v2) = c2 to change to another color
c3 (which may be different or equal to c1) and again forcing a vertex v3 with
color ϕ(v3) = c3 to change to color c4.
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Dynasearch

I Iterative improvement method based on building complex search steps
from combinations of mutually independent search steps

I Mutually independent search steps do not interfere with each other
w.r.t. effect on evaluation function and feasibility of candidate solutions.

Example: Independent 2-exchange steps for the TSP:

u1 ui ui+1 uj uj+1 uk uk+1 ul ul+1 un un+1

Therefore: Overall effect of complex search step = sum of effects of
constituting simple steps;
complex search steps maintain feasibility of candidate solutions.

I Key idea: Efficiently find optimal combination of mutually independent
simple search steps using Dynamic Programming.

18

Weighted Matching Neighborhoods

I Key idea use basic polynomial time algorithms, example: weighted
matching in bipartied graphs, shortest path, minimum spanning tree.

I Neighborhood defined by finding a minimum cost matching on a
(non-)bipartite improvement graph

Example (TSP)
Neighborhood: Eject k nodes and reinsert them optimally
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Cyclic Exchange Neighborhoods

I Possible for problems where solution can be represented as form of
partitioning

I Definition of a partitioning problem:
Given: a set W of n elements, a collection T = {T1, T2, . . . , Tk} of
subsets of W, such that W = T1 ∪ . . . ∪ Tk and Ti ∩ Tj = ∅, and a cost
function c : T → R:
Task: Find another partition T ′ of W by means of single exchanges
between the sets such that

min
k∑

i=1

c(Ti)

I Cyclic exchange:
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Neighborhood search

I Define an improvement graph

I Solve the relative

I Subset Disjoint Negative Cost Cycle Problem

I Subset Disjoint Minimum Cost Cycle Problem
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Example (GCP)

One Exchange

Swap

Path Exchange

Cyclic Exchange

24

Example (GCP)

Exponential size but can be searched efficiently

Improvement Graph

A Subset Disjoint Negative Cost Cycle Problem in the Improvement Graph
can be solved by dynamic programming in O(|V |22k|D ′|).
Yet, heuristics rules can be adopted to reduce the complexity to O(|V ′|2)
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Procedure SDNCC(G ′(V ′, D ′))
Let P all negative cost paths of length 1, Mark all paths in P as untreated
Initialize the best cycle q∗ = () and c∗ = 0

for all p ∈ P do
if (e(p), s(p)) ∈ D ′ and c(p) + c(e(p), s(p)) < c∗ then

q∗ = the cycle obtained by closing p and c∗ = c(q∗)

while P 6= ∅ do
Let P̂ = P be the set of untreated paths
P = ∅
while ∃ p ∈ P̂ untreated do

Select some untreated path p ∈ P̂ and mark it as treated
for all (e(p), j) ∈ D ′ s.t. wϕ(vj)(p) = 0 and c(p) + c(e(p), j) < 0 do

Add the extended path (s(p), . . . , e(p), j) to P as untreated
if (j, s(p)) ∈ D ′ and c(p) + c(e(p), j) + c(j, s(p)) < c∗ then

q∗ = the cycle obtained closing the path (s(p), . . . , e(p), j)
c∗ = c(q∗)

for all p ′ ∈ P subject to w(p ′) = w(p), s(p ′) = s(p), e(p ′) = e(p) do
Remove from P the path of higher cost between p and p ′

return a minimal negative cost cycle q∗ of cost c∗

Example (GCP)

Cyclic exchanges
I negative cost cycles can be detected rather easily thanks to

Lin-Kernighan Lemma
If a sequence of edge costs has negative sum, then there is a cyclic
permutation of these edges such that every partial sum is negative.

Path exchanges
I dynamic programming algorithm requires modification to also check for

path exchanges (easy)
I require a correction term due to the definition of the improvement graph
I unfortunately, the above lemma is not anymore applicable if we require

to find all path exchanges.
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Iterative Improvement

Very Large Scale Neighborhood, effectiveness

Num. Num. distinct Path and cyclic exchanges
vertices colorings One exchange exhaustive truncated

3 7 (2) 0 0 0
4 63 (6) 1 0 1
5 756 (21) 10 0 9
6 14113 (112) 83 4 52
7 421555 (853) 532 15 260
8 22965511 348 11 134

(11117)
9 2461096985 134 1 54

(261080)
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Variable Neighborhood Search (VNS)

Variable Neighborhood Search is an SLS method that is based on the
systematic change of the neighborhood during the search.

Central observations

I a local minimum w.r.t. one neighborhood function is not necessarily
locally minimal w.r.t. another neighborhood function

I a global optimum is locally optimal w.r.t. all neighborhood functions
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I Principle: change the neighborhood during the search

I Several adaptations of this central principle

I (Basic) Variable Neighborhood Descent (VND)

I Variable Neighborhood Search (VNS)

I Reduced Variable Neighborhood Search (RVNS)

I Variable Neighborhood Decomposition Search (VNDS)

I Skewed Variable Neighborhood Search (SVNS)

I Notation

I Nk, k = 1, 2, . . . , km is a set of neighborhood functions

I Nk(s) is the set of solutions in the k-th neighborhood of s
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How to generate the various neighborhood functions?

I for many problems different neighborhood functions (local searches)
exist / are in use

I change parameters of existing local search algorithms
I use k-exchange neighborhoods; these can be naturally extended
I many neighborhood functions are associated with distance measures; in

this case increase the distance
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Basic Variable Neighborhood Descent (BVND)

Procedure VND
input : Nk, k = 1, 2, . . . , kmax, and an initial solution s
output: a local optimum s for Nk, k = 1, 2, . . . , kmax

k← 1

repeat
s ′ ← FindBestNeighbor(s,Nk)
if g(s ′) < g(s) then

s← s ′

(k← 1)
else

k← k+ 1

until k = kmax ;
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Variable Neighborhood Descent (VND)

Procedure VND
input : Nk, k = 1, 2, . . . , kmax, and an initial solution s
output: a local optimum s for Nk, k = 1, 2, . . . , kmax

k← 1

repeat
s ′ ← IterativeImprovement(s,Nk)
if g(s ′) < g(s) then

s← s ′

(k← 1)
else

k← k+ 1

until k = kmax ;
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I Final solution is locally optimal w.r.t. all neighborhoods

I First improvement may be applied instead of best improvement

I Typically, order neighborhoods from smallest to largest

I If iterative improvement algorithms IIk, k = 1, . . . , kmax

are available as black-box procedures:
I order black-boxes
I apply them in the given order
I possibly iterate starting from the first one
I order chosen by: solution quality and speed
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Example

VND for single-machine total weighted tardiness problem

I Candidate solutions are permutations of job indexes
I Two neighborhoods: swap and insert
I Influence of different starting heuristics also considered

initial swap insert swap+insert insert+swap
solution ∆avg tavg ∆avg tavg ∆avg tavg ∆avg tavg
EDD 0.62 0.140 1.19 0.64 0.24 0.20 0.47 0.67
MDD 0.65 0.078 1.31 0.77 0.40 0.14 0.44 0.79

∆avg deviation from best-known solutions, averaged over 100 instances
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Basic Variable Neighborhood Search (VNS)

Procedure BVNS
input : Nk, k = 1, 2, . . . , kmax, and an initial solution s
output: a local optimum s for Nk, k = 1, 2, . . . , kmax

repeat
k← 1

repeat
s ′ ← RandomPicking(s,Nk)
s ′′ ← IterativeImprovement(s ′,Nk)
if g(s ′′) < g(s) then

s← s ′′

k← 1

else
k← k+ 1

until k = kmax ;
until Termination Condition ;
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To decide:
I which neighborhoods
I how many
I which order
I which change strategy

I Extended version: parameters kmin and kstep; set k← kmin and
increase by kstep if no better solution is found (achieves diversification)
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Extensions (1)

Reduced Variable Neighborhood Search (RVNS)

I same as VNS except that no IterativeImprovement procedure is applied

I only explores different neighborhoods randomly

I can be faster than standard local search algorithms for reaching good
quality solutions
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Extensions (2)

Variable Neighborhood Decomposition Search (VNDS)
I same as in VNS but in IterativeImprovement all solution components are

kept fixed except k randomly chosen
I IterativeImprovement is applied on the k unfixed components

I IterativeImprovement can be substituted by exhaustive search up to a
maximum size b (parameter) of the problem
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Extensions (3)

Skewed Variable Neighborhood Search (SVNS)

I Derived from VNS
I Accept s← s ′′ when s ′′ is worse

I according to some probability

I skewed VNS: accept if

g(s ′′) − α · d(s, s ′′) < g(s)

d(s, s ′′) measure the distance between solutions

(underlying idea: avoiding degeneration to multi-start)
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