	Outline
DM811 HEURISTICS AND LOCAL SEARCH ALGORITHMS FOR COMBINATORIAL OPTIMZATION Lecture 11 Very Large Scale Neighborhoods	 Very Large Scale Neighborhoods Variable Depth Search Ejection Chains Dynasearch Weighted Matching Neighborhoods Cyclic Exchange Neighborhoods
Marco Chiarandini	2. Variable Neighborhood Search
Outline	2 Very Large Scale Neighborhoods
 Very Large Scale Neighborhoods Variable Depth Search Ejection Chains Dynasearch Weighted Matching Neighborhoods Cyclic Exchange Neighborhoods Variable Neighborhood Search 	 Small neighborhoods: might be short-sighted need many steps to traverse the search space Large neighborhoods introduce large modifications to reach higher quality solutions allows to traverse the search space in few steps Key idea: use very large neighborhoods that can be searched efficiently (preferably in polynomial time) or are searched heuristically Very large scale neighborhood search: define an exponentially large neighborhood (though, O(n³) might already be large)
3	 2. define a polynomial time search algorithm to search the neighborhood (= solve the neighborhood search problem, NSP) exactly (leads to a best improvement strategy) heuristically (some improving moves might be missed)

Examples of VLSN Search [Ahuja, Ergun, Orlin, Punnen, 2002]:

- based on concatenation of simple moves
 - Variable Depth Search (TSP, GP)
 - Ejection Chains
- based on Dynamic Programming or Network Flows
 - Dynasearch (ex. SMTWTP)
 - Weighted Matching based neighborhoods (ex. TSP)
 - Cyclic exchange neighborhood (ex. VRP)
 - Shortest path
- based on polynomially solvable special cases of hard combinatorial optimization problems
 - Pyramidal tours
 - Halin Graphs

ightarrow
ightarrow Idea: turn a special case into a neighborhood VLSN allows to use the literature on polynomial time algorithms

Variable Depth Search

- Key idea: Complex steps in large neighborhoods = variable-length sequences of simple steps in small neighborhood.
- Use various *feasibility restrictions* on selection of simple search steps to limit time complexity of constructing complex steps.
- Perform Iterative Improvement w.r.t. complex steps.

$\label{eq:constraint} \begin{array}{l} \mbox{Variable Depth Search (VDS):} \\ \mbox{determine initial candidate solution } s \\ \widehat{t} := s \\ \mbox{while } s \mbox{ is not locally optimal } do \\ \mbox{repeat} \\ & \mbox{ select best feasible neighbor } t \\ \mbox{ if } g(t) < g(\widehat{t}) \mbox{ then } \widehat{t} := t \\ & \mbox{ s := } \widehat{t} \\ \mbox{ until construction of complex step has been completed }; \end{array}$

٥

VLSN for the Traveling Salesman Problem

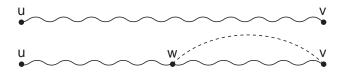
Б

8

- k-exchange heuristics
 - ▶ 2-opt [Flood, 1956, Croes, 1958]
 - 2.5-opt or 2H-opt
 - ▶ Or-opt [Or, 1976]
 - ▶ 3-opt [Block, 1958]
 - ▶ k-opt [Lin 1965]
- complex neighborhoods
 - Lin-Kernighan [Lin and Kernighan, 1965]
 - Helsgaun's Lin-Kernighan
 - Dynasearch
 - Ejection chains approach

The Lin-Kernighan (LK) Algorithm for the TSP (1)

- Complex search steps correspond to sequences of 2-exchange steps and are constructed from sequences of *Hamiltonian paths*
- δ-path: Hamiltonian path p + 1 edge connecting one end of p to interior node of p



Basic LK exchange step:

Start with Hamiltonian path (u, \ldots, v) :

• Obtain δ -path by adding an edge (v, w):

Break cycle by removing edge (w,v'):

Note: Hamiltonian path can be completed into Hamiltonian cycle by adding edge (v', u):

Additional mechanisms used by LK algorithm:

- Pruning exact rule: If a sequence of numbers has a positive sum, there is a cyclic permutation of these numbers such that every partial sum is positive.
 - \blacktriangleright need to consider only gains whose partial sum remains positive
- Tabu restriction: Any edge that has been added cannot be removed and any edge that has been removed cannot be added in the same LK step.
 Note: This limits the number of simple steps in a complex LK step.
- Limited form of backtracking ensures that local minimum found by the algorithm is optimal w.r.t. standard 3-exchange neighborhood
- ▶ (For further details, see original article)

```
[LKH Helsgaun's implementation
http://www.akira.ruc.dk/~keld/research/LKH/ (99 pages report)]
```

Construction of complex LK steps:

- start with current candidate solution (Hamiltonian cycle) s; set t* := s;
 - set p := s
- 2. obtain δ -path p' by replacing one edge in p
- 3. consider Hamiltonian cycle t obtained from p by (uniquely) defined edge exchange
- 4. if $w(t) < w(t^*)$ then set $t^* := t$; p := p'; go to step 2 else accept t^* as new current candidate solution s

Note: This can be interpreted as sequence of 1-exchange steps that alternate between δ -paths and Hamiltonian cycles.

10

Elements for an efficient neighborhood search

11

- fast delta evaluations
- neighborhood pruning: fixed radius nearest neighborhood search
- neighborhood lists: restrict exchanges to most interesting candidates
- don't look bits: focus perturbative search to "interesting" part
- sophisticated data structures for fast updates

TSP data structures

Static data structures:

- priority lists
- k-d trees

Tour representation. Operations needed:

- reverse(a, b)
- ▶ succ(a)
- ▶ prec(a)
- sequence(a,b,c) check whether b is within a and b

Possible choices (dynamic data structure):

- ▶ |V| < 1.000 arries π and π^{-1}
- \blacktriangleright $\left|V\right|<1.000.000$ two level tree
- ▶ |V| > 1.000.000 splay tree

14

Dynasearch

- Iterative improvement method based on building complex search steps from combinations of mutually independent search steps
- Mutually independent search steps do not interfere with each other w.r.t. effect on evaluation function and feasibility of candidate solutions.

Example: Independent 2-exchange steps for the TSP:

Therefore: Overall effect of complex search step = sum of effects of constituting simple steps;

complex search steps maintain feasibility of candidate solutions.

Key idea: Efficiently find optimal combination of mutually independent simple search steps using *Dynamic Programming*.

Ejection Chains

- Attempt to use large neighborhoods without examining them exhaustively
- Sequences of successive steps each influenced by the precedent and determined by myopic choices
- Limited in length
- Local optimality in the large neighborhood is not guaranteed.

Example (on TSP):

successive 2-exchanges where each exchange involves one edge of the previous exchange

Example (on GCP):

successive 1-exchanges: a vertex ν_1 changes color from $\phi(\nu_1)=c_1$ to c_2 , in turn forcing some vertex ν_2 with color $\phi(\nu_2)=c_2$ to change to another color c_3 (which may be different or equal to c_1) and again forcing a vertex ν_3 with color $\phi(\nu_3)=c_3$ to change to color c_4 .

16

20

Weighted Matching Neighborhoods

- Key idea use basic polynomial time algorithms, example: weighted matching in bipartied graphs, shortest path, minimum spanning tree.
- Neighborhood defined by finding a minimum cost matching on a (non-)bipartite improvement graph

Example (TSP)

Neighborhood: Eject k nodes and reinsert them optimally

Cyclic Exchange Neighborhoods

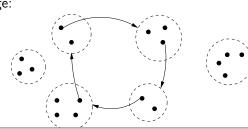
- Possible for problems where solution can be represented as form of partitioning
- Definition of a partitioning problem:

Given: a set W of n elements, a collection $\mathcal{T} = \{T_1, T_2, \dots, T_k\}$ of subsets of W, such that $W = T_1 \cup \ldots \cup T_k$ and $T_i \cap T_j = \emptyset$, and a cost function $c : \mathcal{T} \to \mathbf{R}$:

Task: Find another partition $\mathcal{T}^{\,\prime}$ of W by means of single exchanges between the sets such that

 $\min \sum_{i=1}^{\kappa} c(T_i)$

Cyclic exchange:



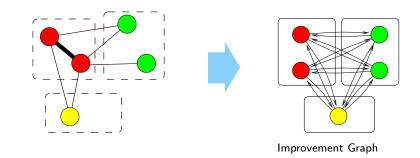
Example (GCP)

Neighborhood search

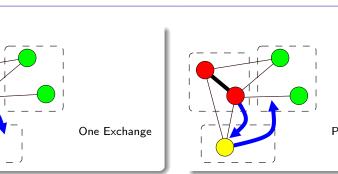
- Define an improvement graph
- Solve the relative
 - Subset Disjoint Negative Cost Cycle Problem
 - Subset Disjoint Minimum Cost Cycle Problem

Example (GCP)

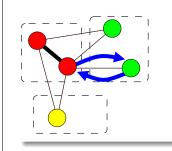
Exponential size but can be searched efficiently

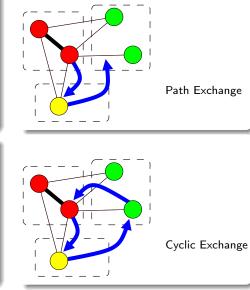


A Subset Disjoint Negative Cost Cycle Problem in the Improvement Graph can be solved by dynamic programming in $\mathcal{O}(|V|^2 2^k |D'|)$. Yet, heuristics rules can be adopted to reduce the complexity to $\mathcal{O}(|V'|^2)$



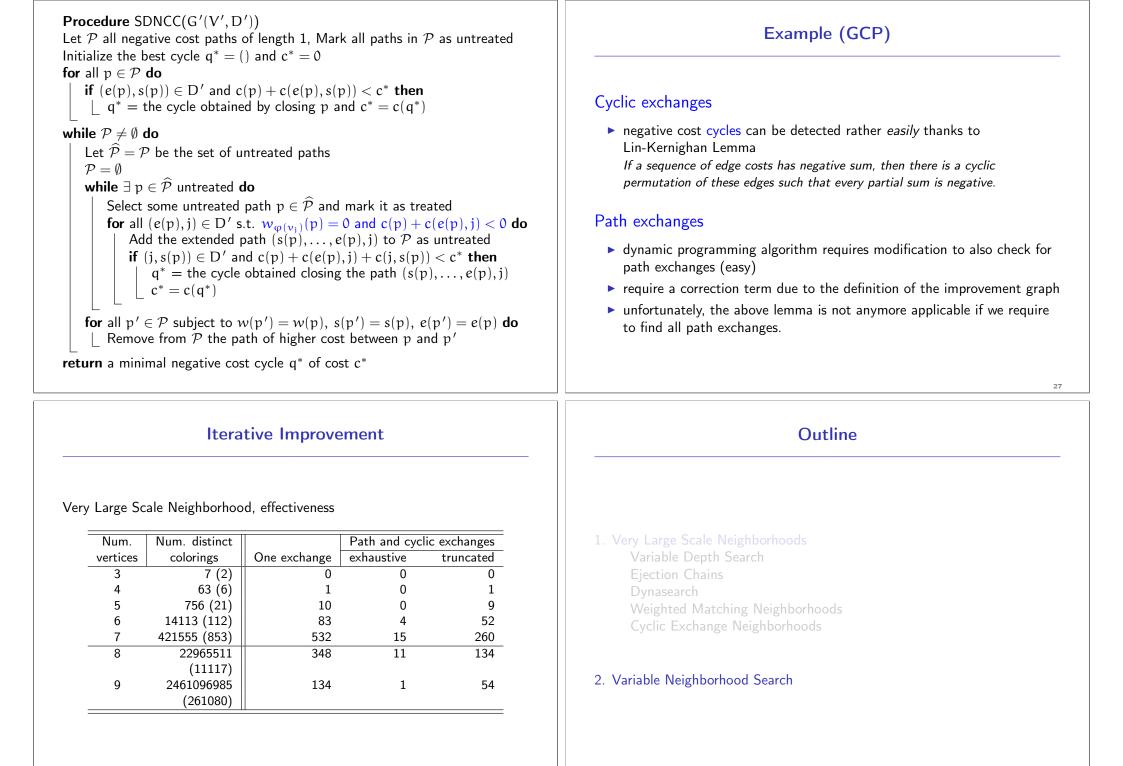
Swap





22

24



Variable Neighborhood Search (VNS)

Variable Neighborhood Search is an SLS method that is based on the systematic change of the neighborhood during the search.

Central observations

- a local minimum w.r.t. one neighborhood function is not necessarily locally minimal w.r.t. another neighborhood function
- > a global optimum is locally optimal w.r.t. all neighborhood functions

- Principle: change the neighborhood during the search
- Several adaptations of this central principle
 - (Basic) Variable Neighborhood Descent (VND)
 - Variable Neighborhood Search (VNS)
 - Reduced Variable Neighborhood Search (RVNS)
 - Variable Neighborhood Decomposition Search (VNDS)
 - Skewed Variable Neighborhood Search (SVNS)
- Notation
 - $\blacktriangleright \ \mathcal{N}_k, \ k=1,2,\ldots,k_m$ is a set of neighborhood functions
 - $\blacktriangleright\ N_k(s)$ is the set of solutions in the k-th neighborhood of s

How to generate the various neighborhood functions?

- for many problems different neighborhood functions (local searches) exist / are in use
- change parameters of existing local search algorithms
- ▶ use k-exchange neighborhoods; these can be naturally extended
- many neighborhood functions are associated with distance measures; in this case increase the distance

Basic Variable Neighborhood Descent (BVND)

```
\begin{array}{l} \mbox{Procedure VND} \\ \mbox{input} & : \mathcal{N}_k, \, k = 1, 2, \ldots, k_{max}, \, \mbox{and an initial solution $s$} \\ \mbox{output: a local optimum $s$ for $\mathcal{N}_k$, $k = 1, 2, \ldots, k_{max}$} \\ \mbox{$k \leftarrow 1$} \\ \mbox{repeat} \\ \mbox{$k \leftarrow 1$} \\ \mbox{repeat} \\ \mbox{$s' \leftarrow FindBestNeighbor}(s, \mathcal{N}_k)$} \\ \mbox{if $g(s') < g(s)$ then} \\ \mbox{$k \leftarrow s'$} \\ \mbox{$k \leftarrow 1$} \\ \mbox{$k \leftarrow 1$} \\ \mbox{else} \\ \mbox{$k \leftarrow k+1$} \\ \mbox{until $k = k_{max}$ ;} \end{array}
```

30

Variable Neighborhood Descent (VND) ▶ Final solution is locally optimal w.r.t. all neighborhoods Procedure VND • First improvement may be applied instead of best improvement **input** : \mathcal{N}_k , $k = 1, 2, \ldots, k_{max}$, and an initial solution s **output**: a local optimum s for \mathcal{N}_k , $k = 1, 2, \ldots, k_{max}$ Typically, order neighborhoods from smallest to largest $k \leftarrow 1$ repeat • If iterative improvement algorithms II_k , $k = 1, \ldots, k_{max}$ $s' \leftarrow \text{IterativeImprovement}(s, \mathcal{N}_k)$ are available as black-box procedures: if q(s') < q(s) then $s \leftarrow s'$ order black-boxes apply them in the given order $(k \leftarrow 1)$ possibly iterate starting from the first one else order chosen by: solution quality and speed $| k \leftarrow k+1$ **until** $k = k_{max}$; 34 35 Basic Variable Neighborhood Search (VNS) Example Procedure BVNS input $: \mathcal{N}_k, \ k = 1, 2, \dots, k_{max}$, and an initial solution s VND for single-machine total weighted tardiness problem **output**: a local optimum s for \mathcal{N}_k , $k = 1, 2, \ldots, k_{max}$ Candidate solutions are permutations of job indexes repeat ► Two neighborhoods: swap and insert k ← 1 repeat Influence of different starting heuristics also considered $s' \leftarrow \mathsf{RandomPicking}(s, \mathcal{N}_k)$ $s'' \leftarrow \text{IterativeImprovement}(s', \mathcal{N}_k)$ initial swap insert swap+insert insert+swap if g(s'') < g(s) then Δ avg tavg solution Δ avg tavg Δ avg tavg Δ avg tavg $s \leftarrow s''$ 0.140 0.20 EDD 0.62 1.190.64 0.24 0.47 0.67 $k \leftarrow 1$ MDD 0.65 0.078 1.31 0.77 0.40 0.14 0.44 0.79 else $| k \leftarrow k+1$ Δ avg deviation from best-known solutions, averaged over 100 instances **until** $k = k_{max}$; until Termination Condition ;

Extensions (1) To decide: which neighborhoods how many Reduced Variable Neighborhood Search (RVNS) which order which change strategy same as VNS except that no IterativeImprovement procedure is applied only explores different neighborhoods randomly **•** Extended version: parameters k_{min} and k_{step} ; set $k \leftarrow k_{min}$ and can be faster than standard local search algorithms for reaching good increase by k_{step} if no better solution is found (achieves diversification) quality solutions 38 39 Extensions (2) Extensions (3) Variable Neighborhood Decomposition Search (VNDS) ▶ same as in VNS but in IterativeImprovement all solution components are Skewed Variable Neighborhood Search (SVNS) kept fixed except k randomly chosen IterativeImprovement is applied on the k unfixed components Derived from VNS • Accept $s \leftarrow s''$ when s'' is worse according to some probability fix red edges and skewed VNS: accept if define subproblem $q(s'') - \alpha \cdot d(s, s'') < q(s)$ d(s, s'') measure the distance between solutions (underlying idea: avoiding degeneration to multi-start) IterativeImprovement can be substituted by exhaustive search up to a

40

maximum size b (parameter) of the problem