
DM811
HEURISTICS AND LOCAL SEARCH ALGORITHMS

FOR COMBINATORIAL OPTIMZATION

Lecture 12

Stochastic Local Search Methods

Marco Chiarandini

Outline

1. Stochastic Local Search Methods (Metaheuristics)
Randomized Iterative Improvement
Attribute Based Hill Climber
Dynamic Local Search
Iterated Local Search
Tabu Search

2

Outline

1. Stochastic Local Search Methods (Metaheuristics)
Randomized Iterative Improvement
Attribute Based Hill Climber
Dynamic Local Search
Iterated Local Search
Tabu Search

3

‘Simple’ SLS Methods

Goal:
Effectively escape from local minima of given evaluation function.

General approach:

For fixed neighborhood, use step function that permits
worsening search steps.

Specific methods:
I Randomized Iterative Improvement
I (Simulated Annealing)
I Attribute Based Hill Climber
I Dynamic Local Search
I Iterated Local Search
I Tabu Search

4



Min-Conflict Heuristics

6

Randomized Iterative Improvement

Key idea: In each search step, with a fixed probability
perform an uninformed random walk step instead of
an iterative improvement step.

Randomized Iterative Improvement (RII):
determine initial candidate solution s
while termination condition is not satisfied do

With probability wp:
choose a neighbor s ′ of s uniformly at random

Otherwise:
choose a neighbor s ′ of s such that g(s ′) < g(s) or,
if no such s ′ exists, choose s ′ such that g(s ′) is minimal

s := s ′

7

Example: Randomized Iterative Improvement for GCP

procedure RIIGCP(F,wp,maxSteps)
input: a graph G and k, probability wp, integer maxSteps
output: a proper coloring ϕ for G or ∅
choose coloring ϕ of G uniformly at random;
steps := 0;
while not(ϕ is not proper) and (steps < maxSteps) do

with probability wp do
select v in V and c in Γ uniformly at random;

otherwise
select v in Vc and c in Γ uniformly at random from those that

maximally decrease number of edge violations;
change color of v in ϕ;
steps := steps+1;

end
if ϕ is proper for G then return ϕ
else return ∅
end

end RIIGCP

8

Note:

I No need to terminate search when local minimum is encountered
Instead: Impose limit on number of search steps or CPU time,
from beginning of search or after last improvement.

I Probabilistic mechanism permits arbitrary long sequences
of random walk steps
Therefore: When run sufficiently long, RII is guaranteed
to find (optimal) solution to any problem instance with
arbitrarily high probability.

I A variant of RII has successfully been applied to SAT
(GWSAT algorithm)

I A variant of GUWSAT, GWSAT [Selman et al., 1994],
was at some point state-of-the-art for SAT.

I Generally, RII is often outperformed by more complex
LS methods.

9



Novelty

Key idea: combine Randomized Iterative Improvement with Min-Conflicts

Example on GCP

    select the
second best colour

   select
best colour

     many colours
with best improvement

   only one colour 
with best improvement

select one, 
not most recent not most recentmost recent

randomly

1−wp

select v and c
randomly

select v in Vc

1−p p

wp

select best colour

colour randomly

10

Attribute Based Hill Climber

I attributes are solution elements that change in a move
I each attribute has associated a value:

I the value of the best solution visited that contains it
I infinity, otherwise

I at each step, a solution in N is acceptable iff it contains an attribute
that has never been seen in a solution of such high quality before

N ′(s) = {s ′ ∈ N(s) : ∃a ∈ s ′ s.t. f(s ′) < φ(a)}

where

φ(a) =

{∞ if V ∩ Sa = ∅
min {f(s) : s ∈ V ∩ Sa} otherwise

with V set of visited solutions and Sa set of solutions that contains a.

12

Examples
I TSP:

ATSP = {(i, j) | (i, j) ∈ E}

I QAP:

AQAP = {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ n} representing (ϕ(i), j)

13 14



Dynamic Local Search

I Key Idea: Modify the evaluation function whenever
a local optimum is encountered.

I Associate weights (penalties) with solution components; these determine
impact of components on evaluation function value.

I Perform Iterative Improvement; when in local minimum, increase
penalties of some solution components until improving steps become
available.

Dynamic Local Search (DLS):
determine initial candidate solution s
initialize penalties
while termination criterion is not satisfied do

compute modified evaluation function g ′ from g

based on penalties
perform subsidiary local search on s

using evaluation function g ′

update penalties based on s

16

Dynamic Local Search (continued)

I Modified evaluation function:

g ′(π, s) := g(π, s) +
∑

i∈SC(π ′,s)

penalty(i),

where SC(π ′, s) is the set of solution components
of problem instance π ′ used in candidate solution s.

I Penalty initialization: For all i: penalty(i) := 0.

I Penalty update in local minimum s: Typically involves penalty increase
of some or all solution components of s; often also occasional penalty
decrease or penalty smoothing.

I Subsidiary local search: Often Iterative Improvement.

17

Potential problem:

Solution components required for (optimal) solution
may also be present in many local minima.

Possible solutions:

A: Occasional decreases/smoothing of penalties.
B: Only increase penalties of solution components that are

least likely to occur in (optimal) solutions.

Implementation of B:
Only increase penalties of solution components i with maximal utility
[Voudouris and Tsang, 1995]:

util(s ′, i) :=
gi(π, s

′)
1+ penalty(i)

where gi(π, s ′) is the solution quality contribution of i in s ′.
18

Example: Guided Local Search (GLS) for the TSP
[Voudouris and Tsang 1995; 1999]

I Given: TSP instance G
I Search space: Hamiltonian cycles in G with n vertices;
I Neighborhood: 2-edge-exchange;

I Solution components edges of G;
ge(G, p) := w(e);

I Penalty initialization: Set all edge penalties to zero.

I Subsidiary local search: Iterative First Improvement.

I Penalty update: Increment penalties for all edges with maximal utility
by

λ := 0.3 · w(s2-opt)

n

where s2-opt = 2-optimal tour.
19



Hybrid Methods

Combination of ‘simple’ methods often yields
substantial performance improvements.

Simple examples:

I Commonly used restart mechanisms can be seen
as hybridisations with Uninformed Random Picking

I Iterative Improvement + Uninformed Random Walk
= Randomized Iterative Improvement

21

Iterated Local Search

Key Idea: Use two types of LS steps:
I subsidiary local (local) search steps for reaching

local optima as efficiently as possible (intensification)

I perturbation steps for effectively
escaping from local optima (diversification).

Also: Use acceptance criterion to control diversification vs intensification
behavior.

Iterated Local Search (ILS):
determine initial candidate solution s
perform subsidiary local search on s
while termination criterion is not satisfied do

r := s

perform perturbation on s
perform subsidiary local search on s
based on acceptance criterion,
keep s or revert to s := r

22

Note:

I Subsidiary local search results in a local minimum.

I ILS trajectories can be seen as walks in the space of
local minima of the given evaluation function.

I Perturbation phase and acceptance criterion may use aspects of search
history (i.e., limited memory).

I In a high-performance ILS algorithm, subsidiary local search,
perturbation mechanism and acceptance criterion need to complement
each other well.

23

Subsidiary local search: (1)

I More effective subsidiary local search procedures lead to better ILS
performance.
Example: 2-opt vs 3-opt vs LK for TSP.

I Often, subsidiary local search = iterative improvement,
but more sophisticated LS methods can be used.
(e.g., Tabu Search).

24



Perturbation mechanism: (1)

I Needs to be chosen such that its effect cannot be easily undone by
subsequent local search phase.
(Often achieved by search steps larger neighborhood.)
Example: local search = 3-opt, perturbation = 4-exchange steps in ILS
for TSP.

I A perturbation phase may consist of one or more
perturbation steps.

I Weak perturbation ⇒ short subsequent local search phase; but: risk of
revisiting current local minimum.

I Strong perturbation ⇒ more effective escape from local minima; but:
may have similar drawbacks as random restart.

I Advanced ILS algorithms may change nature and/or strength of
perturbation adaptively during search.

25

Acceptance criteria: (1)

I Always accept the best of the two candidate solutions⇒ ILS performs Iterative Improvement in the space of local optima
reached by subsidiary local search.

I Always accept the most recent of the two candidate solutions⇒ ILS performs random walk in the space of local optima reached by
subsidiary local search.

I Intermediate behavior: select between the two candidate solutions based
on the Metropolis criterion (e.g., used in Large Step Markov Chains
[Martin et al., 1991].

I Advanced acceptance criteria take into account search history,
e.g., by occasionally reverting to incumbent solution.

26

Example: Iterated Local Search for the TSP (1)

I Given: TSP instance G.

I Search space: Hamiltonian cycles in G.

I Subsidiary local search: Lin-Kernighan variable depth search algorithm

I Perturbation mechanism:
‘double-bridge move’ = particular 4-exchange step:

A

BC

D

double bridge 

move

A

BC

D

I Acceptance criterion: Always return the best of the two given
candidate round trips.

27

Example: Iterated Local Search for the TSP (2)

Note:
I Double-bridge move local cannot be directly reversed by a sequence of

2-exchange steps as performed by "usual" LK implementations.
I This perturbation is empirically shown to be effective independent of

instance size.

Note:

I This ILS algorithm for the TSP is known as Iterated Lin-Kernighan
(ILK) Algorithm.

I Although ILK is structurally rather simple, an efficient implementation
was shown to achieve excellent performance [Johnson and McGeoch,
1997].

28



Iterated local search algorithms . . .

I are typically rather easy to implement (given existing implementation of
subsidiary simple LS algorithms);

I achieve state-of-the-art performance on many
combinatorial problems, including the TSP.

There are many LS approaches that are closely related
to ILS, including:

I Large Step Markov Chains [Martin et al., 1991]

I Chained Local Search [Martin and Otto, 1996]

I Variants of Variable Neighbourhood Search (VNS)
[Hansen and Mladenovic̀, 2002]

29

Tabu Search

Key idea: Use aspects of search history (memory) to escape from local
minima.

I Associate tabu attributes with candidate solutions or
solution components.

I Forbid steps to search positions recently visited by
underlying iterative best improvement procedure based on
tabu attributes.

Tabu Search (TS):
determine initial candidate solution s
While termination criterion is not satisfied:
|| determine set N ′ of non-tabu neighbors of s
|| choose a best candidate solution s ′ in N ′
|||| update tabu attributes based on s ′
b s := s ′

31

Example: Tabu Search for GCP – TabuCol

I Search space: set of all complete colorings of G.

I Solution set: proper colorings of G.

I Neighborhood relation: one-exchange.

I Memory: Associate tabu status (Boolean value) with each pair (v, c).

I Initialization: a construction heuristic

I Search steps:
I pairs (v, c) are tabu if they have been changed

in the last tt steps;
I neighboring colorings are admissible if they

can be reached by changing a non-tabu pair
or have fewer unsatisfied edge constr. than the best coloring
seen so far (aspiration criterion);

I choose uniformly at random admissible coloring
with minimal number of unsatisfied constraints.

I Termination: upon finding a proper coloring for G or after given bound
on number of search steps has been reached or after a number of idle
iterations

32

Note:
I Non-tabu search positions in N(s) are called

admissible neighbors of s.
I After a search step, the current search position

or the solution components just added/removed from it
are declared tabu for a fixed number of subsequent
search steps (tabu tenure).

I Often, an additional aspiration criterion is used: this specifies
conditions under which tabu status may be overridden (e.g., if
considered step leads to improvement in incumbent solution).

I Crucial for efficient implementation:
I keep time complexity of search steps minimal

by using special data structures, incremental updating
and caching mechanism for evaluation function values;

I efficient determination of tabu status:
store for each variable x the number of the search step
when its value was last changed itx; x is tabu if
it− itx < tt, where it = current search step number.

33



Note: Performance of Tabu Search depends crucially on
setting of tabu tenure tt:

I tt too low ⇒ search stagnates due to inability to escape
from local minima;

I tt too high ⇒ search becomes ineffective due to overly restricted search
path (admissible neighborhoods too small)

Advanced TS methods:

I Robust Tabu Search [Taillard, 1991]:
repeatedly choose tt from given interval;
also: force specific steps that have not been made for a long time.

I Reactive Tabu Search [Battiti and Tecchiolli, 1994]:
dynamically adjust tt during search;
also: use escape mechanism to overcome stagnation.

34

Further improvements can be achieved by using intermediate-term or
long-term memory to achieve additional intensification or diversification.

Examples:
I Occasionally backtrack to elite candidate solutions, i.e., high-quality

search positions encountered earlier in the search; when doing this, all
associated tabu attributes are cleared.

I Freeze certain solution components and keep them fixed
for long periods of the search.

I Occasionally force rarely used solution components to be introduced into
current candidate solution.

I Extend evaluation function to capture frequency of use
of candidate solutions or solution components.

35

Tabu search algorithms algorithms are state of the art
for solving many combinatorial problems, including:

I SAT and MAX-SAT
I the Constraint Satisfaction Problem (CSP)
I many scheduling problems

Crucial factors in many applications:

I choice of neighborhood relation

I efficient evaluation of candidate solutions
(caching and incremental updating mechanisms)

36

Example: Tabu Search for QAP
I Solution representation: permutation π
I Initial Solution: randomly generated
I Neighborhood: interchange
∆I : δ(π) = {π ′|π ′k = πk for all k 6= {i, j} and π ′i = πj, π

′
j = πi}

I Tabu status: forbid δ that place back the items in the positions they
have already occupied in the last tt iterations (short term memory)

I Implementation details:
I compute g(π ′) − f(π) in O(n) or O(1) by storing the values all possible

previous moves.
I maintain a matrix [Tij] of size n× n and write the last time item i was

moved in location k plus tt
I δ is tabu if it satisfies both:

I Ti,π(j) ≥ current iteration
I Tj,π(i) ≥ current iteration

37



Example: Robust Tabu Search for QAP

I Aspiration criteria:

I allow forbidden δ if it improves the last π∗

I select δ if never chosen in the last A iterations (long term memory)

I Parameters: tt ∈ [b0.9nc, d1.1n+ 4e] and A = 5n2

38

Example: Reactive Tabu Search for QAP

I Aspiration criteria:

I allow forbidden δ if it improves the last π∗

I Tabu Tenure

I maintain a hash table (or function) to record previously visited solutions

I increase tt by a factor αinc(= 1.1) if the current solution was previously
visited

I decrease tt by a factor αdec(= 0.9) if tt not changed in the last sttc
iterations or all moves are tabu

I Trigger escape mechanism if a solution is visited more than nr(= 3)
times

I Escape mechanism = 1+ (1+ r) ·ma/2 random moves

39


